Deformations of Coisotropic Submanifolds of Jacobi Manifolds

Luca Vitagliano

University of Salerno, Italy

(in collaboration with: H. V. Lê, Y.-G. Oh, and A. Tortorella)

GAMMP, Dortmund, March 16–19, 2015
Coisotropic submanifolds play a distinguished role in Poisson geometry:

- Lagrangian submanifolds of symplectic manifolds,
- first class constraints in Hamiltonian mechanics,
- reduction of Poisson manifolds,
- morphisms of Poisson manifolds,
- branes in Poisson σ-models.

Remark

The *moduli spaces* of coisotropic submanifolds under Hamiltonian and Poisson diffeomorphisms is of a special interest! The *deformation problem* for coisotropic submanifolds has been first studied in

- [Oh, Park 2005] in the symplectic setting,
- [Schätz 2009] in the Poisson setting,
- [Lê, Oh 2012] in the lcs setting.
Jacobi manifolds were introduced in [Kirillov 1976] and, independently, [Lichnerowicz 1978]. They encompass

- Poisson manifolds,
- lcs manifolds,
- contact manifolds.

One can define coisotropic submanifolds of Jacobi manifolds and they play a special role in Jacobi geometry:

- Legendrian submanifolds of contact manifolds,
- reduction of Jacobi manifolds,
- morphisms of Jacobi manifolds.

Aim of the Talk

I will discuss the moduli problem of coisotropic submanifolds of a Jacobi manifold under Hamiltonian diffeomorphisms. In particular, I will describe an L_∞-algebra governing the deformation problem.
Definition

A Jacobi bundle over a manifold M is a line bundle $L \to M$ equipped with a Jacobi bracket, i.e. a first order, skew-symmetric bi-differential operator $\{-,-\} : \Gamma(L) \times \Gamma(L) \to \Gamma(L)$ satisfying the Jacobi identity. A Jacobi manifold is a manifold together with a Jacobi bundle over it.

Remark

For every $\lambda \in \Gamma(L)$ there is an associated Hamiltonian vector field X_λ implicitly defined by

$$\{\lambda, f\mu\} = f\{\lambda, \mu\} + X_\lambda(f)\mu, \quad \lambda, \mu \in \Gamma(L), \quad f \in C^\infty(M).$$

Proposition

1. Hamiltonian vector fields generate an integrable distribution K.
2. Every leaf of K is equipped with either a contact or a lcs structure.
3. The contact/lcs foliation knows everything about $(M, L, \{-,-\})$.
Let \((M, L, \{-, -\})\) be a Jacobi manifold.

Definition

A submanifold \(S \subset M\) is **coisotropic** if \(X_\lambda\) is tangent to \(S\) for all \(\lambda \in \Gamma(L)\) vanishing on \(S\). Equivalently, \(S\) is coisotropic if \(\{\lambda, \mu\}\) vanishes on \(S\) for all \(\lambda, \mu \in \Gamma(L)\) vanishing on \(S\).

Examples are:
- coisotropic submanifolds of Poisson manifolds,
- coisotropic submanifolds of contact manifolds,
- coisotropic submanifolds of lcs manifolds,
- graphs of Jacobi maps.

Proposition

A submanifold \(S \subset M\) is coisotropic iff its intersection with every characteristic leaf \(\mathcal{K}\) is coisotropic in \(\mathcal{K}\).
Let \((M, L, \{-, -\})\) be a Jacobi manifold.

Remark

There is a unique Lie algebroid structure on \(J^1L \to M\) such that

\[
[j^1\lambda, j^1\mu] = j^1\{\lambda, \mu\},
\]

\[
\rho(j^1\lambda) = X_\lambda.
\]

Additionally, there is a unique action of \(J^1L\) on \(L\) such that

\[
j^1\lambda \cdot \mu = \{\lambda, \mu\}.
\]

Proposition

\(S \subset M\) is coisotropic iff \(N^*S \otimes L|_S \to T^*M \otimes L \to J^1L\) is the inclusion of a Lie subalgebroid. In this case there is a cochain complex

\[
0 \to \Gamma(L|_S) \xrightarrow{\partial_S} \Gamma(NS) \xrightarrow{\partial_S} \Gamma(\wedge^2(NS \otimes L^*_|S) \otimes L|_S) \xrightarrow{\partial_S} \cdots.
\]
I want to describe the space of coisotropic submanifolds \textit{locally around a given point }S.

\[
\{\text{coisotropic submanifolds } C^1\text{-close to } S\} \parallel \{\text{coisotropic sections of a tubular neighborhood } \pi : E \rightarrow S \text{ of } S\}
\]

Local Setting

- A vector bundle \(\pi : E \rightarrow S \),
- A line bundle \(L_S \rightarrow S \) and the pull-back bundle \(L := \pi^*L_S \rightarrow E \),
- A Jacobi bracket on \(\Gamma(L) \) such that \(0 : S \hookrightarrow E \) is coisotropic.

Definition

A coisotropic deformation of \(S \) is a section \(s : S \hookrightarrow E \) of \(\pi \) such that \(s(S) \) is a coisotropic submanifold.
Hamiltonian diffeomorphisms are those generated by Hamiltonian vector fields X_λ, with $\lambda \in \Gamma(L)$. They should be understood as inner automorphisms of the Jacobi manifold, and act on coisotropic submanifolds.

Definition

Two coisotropic deformations are *Hamiltonian equivalent* if they are intertwined by an Hamiltonian diffeomorphism (C^1-close to id).

Theorem

1. The deformation problem of a coisotropic submanifold S in a Jacobi manifold is controlled by a certain L_∞-algebra $\mathfrak{g}(S)$.
2. $\mathfrak{g}(S)$ is uniquely defined by S up to L_∞-isomorphisms.

Warning!

In fact, for generic Jacobi manifolds, I can only treat formal coisotropic deformations. Otherwise I have to impose an *entireness condition* on the Jacobi bracket.
L∞-algebras are Lie algebras up to homotopy and generalize DGLAs. Let V be a graded vector space.

Definition

An L∞-algebra structure on V is a sequence of graded maps:

\[l_k : V^{\wedge k} \longrightarrow V[2 - k], \]

satisfying a sequence of coherence conditions:

\[
\sum_{i+j=k} (-)^{ij} \sum_{\sigma \in S_{i,j}} \epsilon(\sigma, x) l_{j+1}(l_i(x_{\sigma(1)}, \ldots, x_{\sigma(i)}), x_{\sigma(i+1)}, \ldots, x_{\sigma(i+j)}).
\]

1. \(l_2^2(x) = 0, \)
2. \(l_1 l_2(x, y) = l_2(l_1 x, y) \pm l_2(x, l_1 y), \)
3. \(l_2(x, l_2(y, z)) \pm l_2(y, l_2(z, x)) \pm l_2(y, l_2(z, x)) = l_1 l_3(x, y, z) + l_3(l_1 x, y, z) \pm l_3(x, l_1 y, z) \pm l_3(x, y, l_1 z), \)
4. \(\ldots \)
Deformation Theory via L_∞-algebras

Let $(g, \{l_k\})$ be an L_∞-algebra.

Definition

1. A **Maurer-Cartan element** (MC) is $x \in g^1$ such that
 $$\sum_{k=1}^{\infty} \frac{1}{k!} l_k(x, \ldots, x) = 0.$$

2. Two MC elements x_0, x_1 are **gauge equivalent** if they are interpolated by a family $\{x_t\}$ and there is a family $\{y_t\} \subset g^0$ such that
 $$\frac{dx_t}{dt} = \sum_{k=0}^{\infty} \frac{1}{k!} l_{k+1}(x_t, \ldots, x_t, y_t).$$

Definition

An L_∞-algebra $(g, \{l_k\})$ **controls** a deformation problem if

1. deformations are in 1-1 correspondence with MC elements of g,
2. two deformations are equivalent iff the corresponding MC elements are gauge equivalent.
Let S be a coisotropic submanifold of a Jacobi manifold $(M, L, \{-,-\})$. Choose a tubular neighborhood $\pi : E \to S$ and adopt the local setting.

Remark

First order multidifferential operators $\Gamma(L) \times \cdots \times \Gamma(L) \to \Gamma(L)$ form a graded Lie algebra $\text{Der}^\cdot L$ with a Schouten-like bracket $[[\ - , -]]$. The Jacobi bracket can be seen as a MC element in $\text{Der}^\cdot L$. Denote it by \mathcal{J}.

Proposition

1. There is a canonical projection $P : \text{Der}^\cdot L \to \Gamma(\wedge^\cdot (E \otimes L_S^*) \otimes L_S)$ with right inverse I depending on π.
2. Voronov’s formula [Voronov 2005]

$$l_k(x_1, \ldots, x_k) := \pm P[[\cdots [\mathcal{J}, I(x_1)], \cdots], I(x_k)]$$

defines an L_∞-algebra $(g(S), \{l_k\})$ with $g(S) = \Gamma(\wedge^\cdot (E \otimes L_S^*) \otimes L_S)$.
3. $(g(S), \{l_k\})$ is independent of the choice of a tubular neighborhood up to L_∞-isomorphisms.
Let S be a coisotropic submanifold of a Jacobi manifold $(M, L, \{-, -\})$.

Theorem

The L_∞-algebra $(\mathfrak{g}(S), \{l_k\})$ controls the deformation problem of S, i.e.

1. coisotropic deformations of S are in 1-1 correspondence with MC elements of $(\mathfrak{g}(S), \{l_k\})$, and
2. two deformations are Hamiltonian equivalent iff the corresponding MC elements are gauge equivalent.

Corollary

1. Non-trivial infinitesimal deformations are in 1-1 correspondence with $H^1(\Gamma(\cdot (\mathcal{N}S \otimes L_S^*) \otimes L_s), \partial S)$,
2. obstruction to the prolongation of an infinitesimal deformation to a formal one live in $H^2(\Gamma(\cdot (\mathcal{N}S \otimes L_S^*) \otimes L_s), \partial S)$.
The Contact Case

Let \((M, C)\) be a non-necessarily coorientable contact manifold and let \(S \subset M\) be a coisotropic submanifold.

Remark

I assume that \(TS \cap C\) has constant rank.

1. \(L = TM/C\) is a Jacobi bundle and \(S\) is coisotropic wrt it,
2. either \(S\) is Legendrian, or \(C_S := TS \cap C\) is a precontact distribution,
3. the characteristic distribution of \((S, C_S)\) has constant rank.

Coisotropic Neighborhood Theorem

A neighborhood of \(S\) does only depend on the intrinsic precontact geometry of \(S\) up to contactomorphisms.

Corollary

The \(L_\infty\)-algebra of \(S\) does only depend on the intrinsic precontact geometry of \(S\) up to \(L_\infty\)-isomorphisms.
The L_∞-algebra of S can be made more explicit in the contact case.

Proposition

Assume S is not Legendrian. Let \mathcal{F} be the characteristic foliation of (S, C_S) and let R be the curvature of a complementary distribution to $T\mathcal{F}$.

$$g(S) = \Omega(\mathcal{F}, L|_S), \quad \text{and} \quad t_k = \begin{cases} \frac{d\mathcal{F}}{\mathcal{O}(R^{k-2})} & \text{for } k = 1 \\ \mathcal{O}(R^{k-2}) & \text{for } k > 1 \end{cases}.$$

Corollary

1. Non-trivial infinitesimal deformations are in $H^1(\mathcal{F}, L|_S)$,
2. obstruction to the prolongation live in $H^2(\mathcal{F}, L|_S)$.

Corollary

The L_∞-algebra of the flowout of a Legendrian submanifold under an Hamiltonian vector field is a DGLA.
A.S. Cattaneo, and G. Felder,
Relative formality theorem and quantisation of coisotropic submanifolds,

H.V. Lê, and Y.-G. Oh,
Deformations of coisotropic submanifolds in locally conformal symplectic manifolds,

H.V. Lê, Y.-G. Oh, A. Tortorella, and L.V.,
Deformations of coisotropic submanifolds in abstract Jacobi manifolds,

Y.-G. Oh, and J.-S. Park,
Deformations of coisotropic submanifolds and strong homotopy Lie algebroids,

F. Schätz,
BFV-complex and higher homotopy structures,

F. Schätz, and M. Zambon,
Equivalences of coisotropic submanifolds,
arXiv:1411.3227.
Thank you!