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A B S T R A C T

This work addresses a variant of the maximum flow problem where specific pairs of arcs are not allowed to
carry positive flow simultaneously. Such restrictions are known in the literature as negative disjunctive constraints
or conflict constraints. The problem is known to be strongly NP-hard and several exact approaches have been
proposed in the literature. In this paper, we present a heuristic algorithm for the problem, based on two
different approaches: Carousel Greedy and Kernel Search. These two approaches are merged to obtain a fast
and effective matheuristic, named Kernousel. In particular, the computational results reveal that exploiting
the information gathered by the Carousel Greedy to build the set of most promising variables (the kernel set),
makes the Kernel Search more effective. To validate the performance of the new hybrid method, we compare
it with the two components running individually. Results are also evaluated against the best-known solutions
available in the literature for the problem. The new hybrid method provides 15 new best-known values on
benchmark instances.
1. Introduction

The study of maximum flow problems in network optimization has
a long history, driven by their critical applications in transportation
and communication systems. In this paper, we address the problem of
finding a maximum flow from a source to a sink in a network, while
complying with classical capacity constraints and preventing positive
flow from being jointly carried out by the arcs of any conflicting pair.
To the best of our knowledge, the problem was first studied by Pferschy
and Schauer (2013), who separated positive from negative disjunctive
constraints showing the NP-hardness of the resulting variants. In ad-
dition, Şuvak et al. (2020) investigated the use of negative disjunctive
constraints to model conflicts between arc pairs, and provided some
mixed-integer linear programming formulations and exact solutions
for the problem. The maximum flow problem with conflicts (MFPC)
belongs to the class of optimization problems with conflict constraints.
Among the existing optimization models dealing with conflicting deci-
sions, we recall the minimum spanning tree problem with conflicting
edge pairs (Carrabs et al., 2019, 2021; Carrabs & Gaudioso, 2021), the
knapsack problem with conflict constraints (Coniglio et al., 2021; Li
et al., 2021; Pferschy & Schauer, 2009), the bin packing problem with
conflicts (Capua et al., 2018; Sadykov & Vanderbeck, 2013), the set
covering problem with conflicts (Carrabs et al., 2024; Saffari & Fathi,
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2022), the shortest path problem with conflicts (Cerulli et al., 2023;
Darmann et al., 2011), the multi-vehicle traveling purchaser problem
with pairwise incompatibility constraints (Gendreau et al., 2016), the
directed profitable rural postman problem with incompatibility con-
straints (Colombi et al., 2017), and the minimum cost perfect matching
with conflict pair constraints (Öncan et al., 2013).

In this paper, we discuss several heuristic approaches to address
the maximum flow problem with conflicts. First, we modify the well-
known augmenting path algorithm (Ahuja et al., 1993), commonly used
to solve the maximum flow problem. Based on a greedy criterion, the
provided variant can quickly identify a feasible solution dealing with
conflicting arcs. Then, we present a more effective algorithm, obtained
by embedding the introduced greedy algorithm in a Carousel Greedy
framework (Cerrone et al., 2017). Given a feasible solution generated
by a greedy algorithm, the core concept behind the Carousel Greedy
approach is to enhance such a solution by replacing the older choices
made by the algorithm with new ones that enable the creation of a
new feasible solution. As the decisions made in the initial and final
phases of the starting greedy algorithm are the most constrained ones,
this process naturally enhances such a procedure, by actually extending
the exploration phase, with a reduced computational overhead.
https://doi.org/10.1016/j.ejor.2025.02.006
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Several well-known combinatorial optimization problems, like the
minimum label spanning tree, the minimum vertex cover, the maxi-
mum independent set, and the minimum weight vertex cover prob-
lems served as the first case study for the Carousel Greedy frame-
work (Cerrone et al., 2017). By now, the resulting scheme has been ap-
plied to a variety of problems, including distribution problems (Cerrone
et al., 2018), the strong generalized minimum label spanning tree
problem (Cerrone et al., 2019), the knapsack problem with forfeits
(Capobianco et al., 2022; Cerulli et al., 2020), the close-enough trav-
eling salesman problem (Carrabs et al., 2020), and the wireless sensor
etworks problems (Carrabs et al., 2017; Cerulli et al., 2022).

To further address the problem, we design an algorithm based on
he Kernel Search scheme (Angelelli et al., 2010, 2012), a matheuristic

framework that relies on the resolution of a sequence of restricted
mixed-integer linear programming problems based on subsets of vari-
ables duly selected while setting the remaining ones to zero. The
method identifies an initial set of promising variables, namely the
kernel set, based on the information gathered by solving the continuous
relaxation of the problem. A variable is deemed promising when there
is a high probability that it will take a positive value in the final
optimal integer solution. The remaining variables are partitioned into
groups called buckets and considered one after the other. Each restricted
problem is constructed by considering the variables belonging to the
kernel set plus the ones in the current bucket. The goal achieved with
the solution of each restricted problem is two-fold: on one side the
obtained feasible solution possibly improves the incumbent one, on
the other side it contributes to the update of the kernel set by adding
new variables (the ones selected in the current bucket when solving
the corresponding restricted problem). In such a scheme, the more
meaningful the continuous relaxation, the more effective the Kernel
Search algorithm.

When first introduced, the Kernel Search scheme was designed to
ddress a complex portfolio optimization problem (Angelelli et al.,

2012). It was also successfully applied to the strongly NP-hard multi-
imensional knapsack problem (Angelelli et al., 2010). Since then,
he Kernel Search framework has been adopted to solve a variety of
ptimization problems, including the multidimensional multiple-choice
napsack problem (Lamanna et al., 2022), a complex multi-objective
ersonnel scheduling (Mansini et al., 2023), the index tracking prob-

lem (Guastaroba & Speranza, 2012), lot-sizing problems (Carvalho &
Nascimento, 2018; Kirschstein & Meisel, 2019), as well as facility
location problems (Filippi et al., 2021; Guastaroba & Speranza, 2014;
Mansini & Zanotti, 2022) and routing problems (Gobbi et al., 2023;
Hanafi et al., 2020). Beyond the application to specific problems, the

ernel Search framework was also generalized to tackle the solution
f general mixed integer linear programs (Guastaroba et al., 2017),

used as a primal heuristic inside a Branch-and-Cut approach (Hanafi
et al., 2020) and enhanced through a two-phase mechanism able to
dynamically set the value of the main parameters according to the type
of instance solved (Lamanna et al., 2022).

Finally, in this paper, we propose a novel hybrid approach, named
ernousel, consisting of a Kernel Search algorithm that incorporates the
reviously described Carousel Greedy algorithm.

Contributions. The main contributions of the paper are listed below:

• A non-trivial adaptation of the classical augmenting path algo-
rithm is designed to generate conflict-free augmenting paths;

• A Carousel Greedy and a Kernel Search algorithm for the MFPC
are developed;

• A new hybrid method, named Kernousel, merging Carousel
Greedy and Kernel Search to obtain a novel more effective
matheuristic, is presented. The new method is particularly well-
suited for all those combinatorial problems where the Kernel
Search has to struggle to identify promising variables since the
optimal solution of the continuous relaxation does not provide

any relevant information.

2 
• A computational study is carried out on a set of benchmark
instances to validate proposed methods. A comparison of our
algorithms with the state-of-the-art solution approaches for the
MFPC is also included.

The remaining part of the paper is organized as follows. In Section 2,
we provide a formal definition of the problem and we report two for-

ulations from the literature. Section 3 is devoted to the description of
he solution algorithms implemented to solve the problem. In Section 4,

we test the proposed methods comparing their results with those of a
state-of-the-art algorithm on benchmark instances. Finally, conclusions
are drawn in Section 5.

2. Problem description and formulations

The maximum flow problem with additional conflict constraints
(MFPC) is defined on a directed graph 𝐺 = (𝑉 , 𝐴), with 𝑉 denoting
the set of nodes and 𝐴 the set of arcs. The node set includes a source
ode 𝑠 and a sink node 𝑡. A capacity vector 𝑢 ∈ N|𝑉 |×|𝑉 |

0 is provided,
ith 𝑢𝑖𝑗 indicating the maximum amount of flow that can be sent from
ode 𝑖 to node 𝑗, ∀ 𝑖, 𝑗 ∈ 𝑉 and 𝑢𝑖𝑗 = 0 if (𝑖, 𝑗) ∉ 𝐴. Two arcs
𝑖, 𝑗), (𝑘,𝓁) ∈ 𝐴, (𝑖, 𝑗) ≠ (𝑘,𝓁), are in conflict if, in any feasible solution
f MFPC, at most one of them can have positive flow. Let 𝛿(𝑖, 𝑗) be the
et of arcs in conflict with the arc (𝑖, 𝑗) ∈ 𝐴. The aim of the problem is
o identify the maximum flow from 𝑠 to 𝑡 that satisfies both the conflict
nd the capacity constraints. Any feasible solution 𝑆 to the problem
an be represented, for simplicity, as a (possibly empty) sequence of
𝑆 conflict-free flow augmenting paths 𝑆 = ⟨𝑃1, 𝑃2,… , 𝑃𝑛𝑆 ⟩. Indeed,

a solution is not simply a sequence of paths but is represented by the
flows assigned to each arc of the network, derived from the augmenting
paths used. It is worth noting that the zero-flow solution is always
feasible for the MFPC regardless of the graph and set of conflicts. Useful
otation adopted throughout the paper can be found in the first part of

Table A.7 in Appendix.
Fig. 1(a) shows a flow network in which the conflict-free arcs are

depicted as black thin-line arrows, while arcs in conflict with each other
are represented using thick-line arrows of the same color. This means
that 𝛿(𝑠, 𝑎) = 𝛿(𝑏, 𝑎) = 𝛿(𝑐 , 𝑡) = 𝛿(𝑒, 𝑡) = ∅ while 𝛿(𝑠, 𝑏) = {(𝑐 , 𝑒), (𝑑 , 𝑡)},
(𝑎, 𝑒) = {(𝑎, 𝑐), (𝑏, 𝑑)} and so on. In Fig. 1(b) we show the corresponding

optimal solution 𝑆 = ⟨𝑃1, 𝑃2⟩ of MFPC, where 𝑃1 = ⟨(𝑠, 𝑎), (𝑎, 𝑒), (𝑒, 𝑡)⟩
nd 𝑃2 = ⟨(𝑠, 𝑏), (𝑏, 𝑐), (𝑐 , 𝑡)⟩ are two augmenting paths carrying 2 and
 units of flow, respectively. The units of flows on 𝑃1 and 𝑃2 are

set equal to the minimum capacity between the arcs belonging to
them. To represent the flow sent through an arc we use the notation
flow/capacity: for example, in Fig. 1(b) the value 2/3 on arc (𝑠, 𝑎)
indicates a flow of 2 units on an arc with capacity 3. Let 𝑧(𝑆) denote
the value associated with the solution 𝑆, i.e., the amount of flow sent
rom 𝑠 to 𝑡 through the augmenting paths in 𝑆. In the example, the total
low is equal to 5 units.

2.1. Mathematical models

In this section, we describe the two Mixed-Integer Linear Program-
ing formulations for the MFPC as introduced in Şuvak et al. (2020),
enoted as MFPCs and MFPCw, respectively. The authors show in the
ame work that the polyhedron associated with the LP relaxation of
FPCw contains the one corresponding to the LP relaxation of MFPCs.
hus, the LP relaxation of MFPCs produces better bounds, and then

t is referred to as strong formulation, while MFPCw is named weak
formulation. In the following, the two formulations are reported.

Formulation 1. MFPCs (Strong Formulation)

max  (1a)

s.t.
∑

(𝑖,𝑗)∈𝐴
𝑓𝑖𝑗 −

∑

(𝑗 ,𝑖)∈𝐴
𝑓𝑗 𝑖 =

⎧

⎪

⎨

⎪

 if 𝑖 = 𝑠
0 if 𝑖 ∈ 𝑉 ⧵ {𝑠, 𝑡} ∀ 𝑖 ∈ 𝑉 (1b)
⎩

− if 𝑖 = 𝑡
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Fig. 1. An example of the MFPC problem. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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𝑥𝑖𝑗 + 𝑥𝑘𝓁 ≤ 1 ∀ (𝑖, 𝑗) ∈ 𝐴,
(𝑘,𝓁) ∈ 𝛿(𝑖, 𝑗) (1c)

0 ≤ 𝑓𝑖𝑗 ≤ 𝑢𝑖𝑗𝑥𝑖𝑗 ∀ (𝑖, 𝑗) ∈ 𝐴 (1d)

𝑥𝑖𝑗 ∈ {0, 1} ∀ (𝑖, 𝑗) ∈ 𝐴 (1e)

 ≥ 0. (1f)

Formulation 2. MFPCw (Weak Formulation)

max  (2a)

s.t.
∑

(𝑖,𝑗)∈𝐴
𝑓𝑖𝑗 −

∑

(𝑗 ,𝑖)∈𝐴
𝑓𝑗 𝑖 =

⎧

⎪

⎨

⎪

⎩

 if 𝑖 = 𝑠
0 if 𝑖 ∈ 𝑉 ⧵ {𝑠, 𝑡}
− if 𝑖 = 𝑡

∀ 𝑖 ∈ 𝑉 (2b)

|𝛿(𝑖, 𝑗)|𝑥𝑖𝑗 +
∑

(𝑘,𝓁)∈𝛿(𝑖,𝑗)
𝑥𝑘𝓁 ≤ |𝛿(𝑖, 𝑗)| ∀ (𝑖, 𝑗) ∈ 𝐴 (2c)

0 ≤ 𝑓𝑖𝑗 ≤ 𝑢𝑖𝑗𝑥𝑖𝑗 ∀ (𝑖, 𝑗) ∈ 𝐴 (2d)

𝑥𝑖𝑗 ∈ {0, 1} ∀ (𝑖, 𝑗) ∈ 𝐴 (2e)

 ≥ 0. (2f)

Both formulations are based on the continuous variables 𝑓 ∈ R+
0
|𝐴|,

indicating the flow assigned to each arc, the continuous variable  ,
representing the overall flow from 𝑠 to 𝑡, and the binary auxiliary
variables 𝑥 ∈ {0, 1}|𝐴|, where 𝑥𝑖𝑗 is equal to 1 if the related arc (𝑖, 𝑗)
carries some flow. Furthermore, both the formulations make use of the
classical flow-balance equality constraints (1b) and (2b), as well as the
classical flow capacity constraints, modified in order to correctly set the
values of the auxiliary variables 𝑥 to 1 if the flow on the related arcs
is positive, (1d) and (2d) respectively.

The two formulations only differ in how they prevent conflict
violations. In particular, constraints (1c) guarantee, for each pair of
onflicting arcs (𝑖, 𝑗) and (𝑘,𝓁), that at most one of them has positive

flow, while constraints (2c) impose that if arc (𝑖, 𝑗) ∈ 𝐴 has a positive
low (𝑥𝑖𝑗 = 1) then all arcs in 𝛿(𝑖, 𝑗) have flow equal to zero. We report

both formulations as they are both used in our hybrid approach as
explained in Section 3.3. Given any feasible solution (𝑓 , 𝑥̂) of MFPCs
(MFPCw), we denote by  (𝑓 , 𝑥̂) the corresponding objective function
value assumed by the  variable. Moreover, we indicate as LP-MFPCs
and LP-MFPCw the linear relaxations of the strong and the weak formu-
lations, respectively. Given a subset of arcs 𝐹 ⊆ 𝐴, we further denote
by MFPCs(𝐹 ) and MFPCw(𝐹 ) the strong and the weak formulations, in
which the set of variables is restricted to those associated with the arcs
in 𝐹 , while LP-MFPCs(𝐹 ) and LP-MFPCw(𝐹 ) are their linear relaxations,
respectively.

3. Heuristic approaches

This section provides an in-depth description of the heuristic and
atheuristic methods developed to tackle the MFPC. In particular,
3 
Section 3.1 introduces a modified version of the well-established aug-
menting path algorithm tailored for the MFPC. Section 3.2 outlines an
enhanced algorithm derived by integrating the greedy algorithm from
Section 3.1 into the Carousel Greedy framework. In Section 3.3, we
detail a Kernel Search algorithm. Finally, in Section 3.4, we introduce
he innovative hybrid approach Kernousel, which combines a Kernel

Search algorithm with the previously discussed Carousel Greedy algo-
rithm. Main notation used in the algorithms can be found in the second
part of Table A.7 in Appendix.

3.1. Greedy algorithm

In this section, we present a non-trivial heuristic modification de-
signed to accommodate conflict constraints within the conventional
ugmenting path algorithm typically employed for solving the maxi-
um flow problem.

The key aspects of such an adaptation concern (i) the update of the
esidual network after sending a positive flow along a path 𝑃 , requiring
he exclusion of all the arcs in conflict with the ones traversed by
𝑃 ; and (ii) the ad-hoc strategy employed to identify each augmenting
path while complying with conflicts. The algorithm employs the widely
recognized capacity scaling approach to prioritize finding augmenting
paths with the highest capacity.

Formally, given a capacitated network 𝐺 = (𝑉 , 𝐴) and a non nega-
tive flow 𝑓 = {𝑓 𝑖𝑗 |(𝑖, 𝑗) ∈ 𝐴}, i.e., a vector satisfying constraints (1b)
and (1d), the residual capacity associated with each pair of nodes
(𝑖, 𝑗) ∈ 𝑉 × 𝑉 , with respect to 𝑓 , is denoted by 𝑟(𝑓 )𝑖𝑗 = 𝑢𝑖𝑗 − 𝑓 𝑖𝑗 + 𝑓 𝑗 𝑖.
Furthermore, the residual network of 𝐺 induced by 𝑓 is defined as
𝐺𝑓 = (𝑉𝑓 , 𝐴𝑓 ), where 𝑉𝑓 = 𝑉 and 𝐴𝑓 = {(𝑖, 𝑗) ∈ 𝑉 × 𝑉 ∶ 𝑟(𝑓 )𝑖𝑗 > 0}.
Any directed 𝑠-𝑡 path in 𝐺𝑓 is an augmenting path. Note that there
may be arcs in 𝐴𝑓 that conflict with each other, as well as arcs in 𝐴𝑓
that conflict with arcs (𝑖, 𝑗) ∈ 𝐴 for which 𝑓 𝑖𝑗 > 0. The generation
of a new augmenting path in 𝐺𝑓 must ensure the exclusion of any
conflicting arcs. This requirement is met through the following two
steps. First, whenever 𝐺𝑓 is updated, all the arcs conflicting with
some of the arcs in ⋃

(𝑖,𝑗)∈𝐴𝑓 ∶𝑓 𝑖𝑗>0
𝛿(𝑖, 𝑗) are removed from 𝐴𝑓 . Second,

the ComputeNextPath procedure is left to identify a non-conflicting
augmenting path in the resulting residual network 𝐺𝑓 . By iterating
these two stages until no more augmenting paths are detected, the
designed greedy algorithm incrementally builds an ordered sequence
of paths and finally provides a solution 𝑆 = ⟨𝑃1, 𝑃2,… , 𝑃𝑛𝑆 ⟩ of non-
conflicting augmenting paths (where we indicate by 𝑛𝑆 the number
of paths belonging to the solution 𝑆), along with a vector 𝛥, indexed
by the identified paths, such that 𝛥𝑃𝑘 = min{𝑟(𝑓 )𝑖𝑗 ∶ (𝑖, 𝑗) ∈ 𝑃𝑘} is the
augmenting capacity associated with 𝑃𝑘, 𝑘 ∈ {1,… , 𝑛𝑆}. Finally, the
amount of flow crossing the arc (𝑖, 𝑗) in this solution 𝑆 is given by
𝑓𝑖𝑗 = max{0, 𝑢𝑖𝑗 − 𝑟(𝑓 )𝑖𝑗 }.

The pseudocode of the procedure is reported in Algorithm 1, which
takes as input a graph 𝐺 = (𝑉 , 𝐴), a source node 𝑠 ∈ 𝑉 and a sink node
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Algorithm 1: MFPC-Greedy
Data: Original graph 𝐺 = (𝑉 , 𝐴); source node 𝑠; sink node 𝑡.
Result: Ordered sequence of the identified conflict-free

augmenting paths 𝑆 = ⟨𝑃𝑘⟩𝑘∈{1,…,|𝑆|}; their capacities
𝛥 = ⟨𝛥𝑃𝑘 ⟩𝑘∈{1,…,|𝑆|}; final residual graph 𝐺𝑓 .

1 𝑆 ←←← ⟨⟩; 𝛥 ←←← ⟨⟩;
2 𝑓𝑖𝑗 ←←← 0, ∀ (𝑖, 𝑗) ∈ 𝑉 × 𝑉 ;
3 𝐺𝑓 ←←← residual graph of 𝐺 w.r.t. 𝑓 ;
4 (𝑃 , 𝛥𝑃 ) ←←← ComputeNextPath(𝐺𝑓 , 𝑠, 𝑡, ⟨⟩, 𝑁 𝑜𝑛𝑒);
5 while 𝑃 ≠ ⟨⟩ do
6 Send a flow 𝛥𝑃 through path 𝑃 and update 𝑓 and 𝐺𝑓 ,

accordingly;
7 Remove from 𝐺𝑓 all the arcs in ⋃

(𝑖,𝑗)∈𝐴𝑓 ∶𝑓 𝑖𝑗>0
𝛿(𝑖, 𝑗);

8 Add 𝑃 to 𝑆 and 𝛥𝑃 to 𝛥;
9 (𝑃 , 𝛥𝑃 ) ←←← ComputeNextPath(𝐺𝑓 , 𝑠, 𝑡, ⟨⟩, 𝑁 𝑜𝑛𝑒);
10 end
11 return 𝑆, 𝛥, 𝐺𝑓

𝑡 ∈ 𝑉 such that 𝑠 ≠ 𝑡. In the initialization phase, the empty sequences
𝑆 and 𝛥, as well as the zero-flow 𝑓 , are initialized, and the auxiliary
graph 𝐺𝑓 is built (Lines 1–3). A first augmenting path 𝑃 that does not
violate any conflict in the residual graph 𝐺𝑓 is detected by using the
ComputeNextPath procedure described in Algorithm 2 (Line 4). If the
conflict-free augmenting path 𝑃 returned by the algorithm is not empty,
n iteration of the main loop (Lines 5–10) is performed, and additional
terations of this loop follow, as long as the ComputeNextPath proce-
ure identifies non-empty paths. In each iteration, the amount of flow
𝑃 is sent along 𝑃 , and the flow and the residual network are updated
ccordingly (Line 6). Note that, if the amount of flow sent on some
rc (𝑖, 𝑗) is reset to a positive value by performing this operation, the

arcs in 𝛿(𝑖, 𝑗) are re-added to the residual network. Subsequently, all the
arcs that are in conflict with the ones having a positive flow in 𝐺𝑓 are
emoved from the residual network (Line 7), while 𝑆 and 𝛥 are updated
Line 8). Finally, the ComputeNextPath procedure is newly invoked to
ossibly obtain an augmenting path 𝑃 that will be added to the solution
n the next iteration (Line 9).

At the end of the 𝑘th iteration, 𝑆 stores exactly 𝑘 non-empty conflict-
ree augmenting paths, according to the order in which they have been

generated by the algorithm, i.e., 𝑆 = ⟨𝑃𝑖⟩𝑖∈{1,…,𝑘}, while 𝛥 = {𝛥𝑃𝑖}𝑖=1,…,𝑘
eports the associated augmenting flows. In the style of a constructive
lgorithm, once a path is added to the solution, it is no longer modified
r removed. However, it is worth noting that updating the residual

network can still possibly make previously excluded arc(s) available
gain. This happens when the conflicting arc(s) used in the solution no
onger carry some flow. As a trivial example, consider 𝑆 = ⟨𝑃1, 𝑃2⟩,

where 𝑃1 = ⟨(𝑠, 𝑖), (𝑖, 𝑗), (𝑗 , 𝑡)⟩, 𝑃2 = ⟨(𝑠, 𝑗), (𝑗 , 𝑖), (𝑖, 𝑡)⟩ and 𝛥𝑃1 = 𝛥𝑃2 . It is
easy to see that the actual flow 𝑓 𝑖𝑗 carried by the arc (𝑖, 𝑗) is 𝛥𝑃1 after
the first iteration, and zero after the second one. Accordingly, when
updating 𝐺𝑓 after the first iteration, all the arcs in 𝛿(𝑖, 𝑗) are removed
from 𝐴𝑓 , while each of them is re-added after the second iteration
unless it is in conflict with some other arc of 𝑃1 or 𝑃2 with associated
positive flow.

The ComputeNextPath procedure, used on Line 5 of Algorithm 1,
applies a greedy strategy in order to identify an augmenting path
satisfying all the conflict constraints in 𝐺𝑓 . The well-known capacity
scaling approach (Cormen et al., 2022) is adopted to compute the first
-𝑡 augmenting path, and a series of recursive iterations are performed
n this path to remove possible conflicts. More in detail, the procedure
tarts from the source node and selects the sequence of arcs of the path

until an arc (𝑖, 𝑗), in conflict with at least one of the previous arcs of
he path, is met. Let (𝑣, 𝑤) be the first of the arcs of the path in conflict
ith (𝑖, 𝑗). At this point, the algorithm randomly chooses one between

(𝑖, 𝑗) and (𝑣, 𝑤) as the pivot arc (𝑝 , 𝑞 ), i.e., the first arc to discard in
𝑁 𝑁

4 
Algorithm 2: ComputeNextPath
Data: Residual graph 𝐺𝑓 ; source node 𝑠; sink node 𝑡; possibly

empty partial solution path 𝑃𝐼 𝑁 𝐼 𝑇 ; pivot arc (𝑝, 𝑞),
required in case a non-empty 𝑃𝐼 𝑁 𝐼 𝑇 is provided.

Result: Conflict-free 𝑠-𝑡 path 𝑃 , with the associated capacity
𝛥𝑃 , if any is found. An empty path, along with its zero
capacity, are returned, otherwise.

1 if 𝑃𝐼 𝑁 𝐼 𝑇 = ⟨⟩ then 𝑠̄ ←←← 𝑠;
2 else
3 𝑟̂ ←←← current vector of the residual capacities of the arcs in

𝐺𝑓 ;
4 𝑟𝑖𝑗 ←←← 0, ∀ (𝑖, 𝑗) ∈ 𝐴 s.t. ∃ 𝑘 ∈ 𝑉 ⧵ {𝑗} ∶ (𝑘, 𝑗) ∈ 𝑃𝐼 𝑁 𝐼 𝑇 ;
5 𝑟𝑝𝑞 ←←← 0; 𝑠̄ ←←← 𝑝;
6 end
7 (𝑃 , 𝛥𝑃 ) ←←← CapacityScaling(𝐺𝑓 , ̄𝑠, 𝑡);
8 if 𝑃 = ⟨⟩ then return ⟨⟩, 0;
9 else
10 (𝑃 , (𝑝𝑁 , 𝑞𝑁 )) ←←← ValidatePath(𝑃𝐼 𝑁 𝐼 𝑇 , 𝑃 );
11 if 𝑝𝑁 ≠ 𝑁 𝑜𝑛𝑒 then (𝑃 , 𝛥𝑃 ) ←←←

ComputeNextPath(𝐺𝑓 , 𝑠, 𝑡, 𝑃 , (𝑝𝑁 , 𝑞𝑁 ));
12 𝑟𝑖𝑗 ←←← 𝑟̂𝑖𝑗 , ∀ (𝑖, 𝑗) ∈ 𝐴 s.t. ∃ 𝑘 ∈ 𝑉 ⧵ {𝑗} ∶ (𝑘, 𝑗) ∈ 𝑃𝐼 𝑁 𝐼 𝑇 ;
13 𝑟𝑝𝑞 ←←← 𝑟̂𝑝𝑞 ;
14 return 𝑃 , 𝛥𝑃 ;
15 end

order to avoid the conflict violation. Then, the partial path from the
ource to node 𝑝𝑁 is saved and a second path, starting from 𝑝𝑁 and

reaching the sink, is built. This process is recursively repeated until a
conflict-free path from 𝑠 to 𝑡 is built or the procedure fails to construct
such a path.

Fig. 2 provides an example of how the MFPC-Greedy algorithm
works. To simplify the description of the example, we do not show
how the residual network is updated at each iteration. Fig. 2(a) shows
 flow network in which the conflict-free arcs are depicted as black

thin-line arrows, while arcs in conflict with each other are represented
using thick-line arrows of the same color. Fig. 2(b) shows the first
-t path of highest capacity ⟨(𝑠, 𝑏), (𝑏, 𝑐), (𝑐 , 𝑑), (𝑑 , 𝑡)⟩ computed by Com-
uteNextPath, temporarily ignoring the conflict constraints. If the just
btained path does not contain any pair of arcs in conflict with each
ther, then the procedure sends the flow from 𝑠 to 𝑡 along it, otherwise
t looks for the first pair of arcs in the path in conflict with each
ther, that is the pair {(𝑏, 𝑐), (𝑐 , 𝑑)} in this example. ComputeNextPath
andomly selects one of these two arcs, let us say (𝑐 , 𝑑), and it removes
𝑐 , 𝑑) and the following arcs from the path obtaining the new partial
ath ⟨(𝑠, 𝑏), (𝑏, 𝑐)⟩ depicted in Fig. 2(c). ComputeNextPath is recursively
nvoked, in order to build a conflict-free path toward the sink 𝑡. In
his example, ComputeNextPath adds to the partial path the arc (𝑐 , 𝑡),
btaining the conflict-free augmenting path ⟨(𝑠, 𝑏), (𝑏, 𝑐), (𝑐 , 𝑡)⟩, along
hich three units of flow are sent (Fig. 2(d)). Notice that, since this path

uses the arcs (𝑠, 𝑏) and (𝑏, 𝑐), then all the arcs that are in conflict with
hem (i.e., the ones represented as green and red thick-line arrows) are
emoved from the network because they cannot produce any additional
onflict-free augmenting path.

The pseudocode of the ComputeNextPath procedure is reported in
Algorithm 2. It receives as input the residual graph 𝐺𝑓 , the source and
the sink nodes 𝑠 and 𝑡, together with two optional parameters: a partial
solution 𝑃𝐼 𝑁 𝐼 𝑇 and a pivot arc (𝑝, 𝑞), where 𝑝 is the last node of 𝑃𝐼 𝑁 𝐼 𝑇 ,
if 𝑃𝐼 𝑁 𝐼 𝑇 ≠ ⟨⟩. If available, 𝑃𝐼 𝑁 𝐼 𝑇 is used as the initial path. However, as
mentioned earlier, when a conflict is identified during the construction
process, the algorithm randomly chooses a new pivot arc. This pivot
arc is selected from 𝑃𝐼 𝑁 𝐼 𝑇 with a 50% probability. In the end, if a
conflict-free augmenting path 𝑃 is found, then the algorithm returns 𝑃
and the amount of flow 𝛥 sent through 𝑃 . Otherwise, an empty path is
𝑃
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Fig. 2. Example of the MFPC-Greedy algorithm. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
o

w
t

returned, along with its zero capacity, to indicate that no conflict-free
ugmenting path has been found.

More in detail, the first operation performed by the algorithm is
to check whether a partial path 𝑃𝐼 𝑁 𝐼 𝑇 is provided (Line 1). If this
s not the case, the current source node 𝑠̄ and the original source 𝑠

coincide. Otherwise, 𝑠̄ is initialized with the tail of the provided pivot
arc, the residual capacities of the pivot arc (𝑝, 𝑞) and those of the arcs
entering any node traversed by 𝑃𝐼 𝑁 𝐼 𝑇 are stored and temporarily set
to zero in 𝐺𝑓 , in order to prevent the creation of non-simple paths
(Lines 3–5). The original residual capacities are afterward restored
n Lines 12–13. To compute an augmenting 𝑠-𝑡 path, the well-known
apacity scaling approach (Cormen et al., 2022) is adopted (Line 7).

The method consists of imposing a limit on the minimum amount of
flow sent along the desired path and iteratively decreasing such a limit
until a path is found. If it is not possible to send additional flow from 𝑠
o 𝑡 on 𝐺𝑓 , the path 𝑃 is empty and the flow 𝛥𝑃 is zero. In this case, the

ComputeNextPath procedure stops and returns the empty path (Line 8).
therwise, in order to check for conflicting arcs, potentially included in
𝐼 𝑁 𝐼 𝑇 and 𝑃 , the ValidatePath procedure is exploited (Line 10). If the
oncatenation of 𝑃𝐼 𝑁 𝐼 𝑇 and 𝑃 contains two conflicting arcs, then the
lgorithm returns (𝑝𝑁 , 𝑞𝑁 ) as the selected pivot arc, and 𝑃 as the partial
onflict-free solution path, which contains all the arcs preceding 𝑝𝑁 in
he concatenation of 𝑃𝐼 𝑁 𝐼 𝑇 and 𝑃 . In order to obtain a conflict-free 𝑠-
path, starting from the new pivot arc (𝑝𝑁 , 𝑞𝑁 ), ComputeNextPath is

ecursively invoked (Line 11). Otherwise, if no conflict violation is
etected, no value is assigned to (𝑝𝑁 , 𝑞𝑁 ), whereas 𝑃 becomes the
oncatenation of 𝑃𝐼 𝑁 𝐼 𝑇 and 𝑃 and is finally returned (Line 14).

Algorithm 3 provides the pseudocode of the ValidatePath procedure
used to validate the generated augmenting paths with respect to the
defined set of conflicts. The algorithm receives two paths as input: 𝑃𝑠𝑘,
a partial path from the source node 𝑠 to an intermediate node 𝑘 ≠ 𝑡,
which does not include any conflicting arc pairs and may be empty; and
𝑃𝑘𝑡, a candidate completing path from node 𝑘 to the sink node 𝑡 that
may violate conflicts. Clearly, if 𝑃𝑠𝑘 is empty, 𝑘 = 𝑠, i.e., 𝑃𝑘𝑡 starts from

the source node 𝑠. The output of the algorithm consists of a conflict-free

5 
Algorithm 3: ValidatePath
Data: Conflict-free partial path 𝑃𝑠𝑘; candidate completing path

𝑃𝑘𝑡.
Result: Conflict-free 𝑠-𝑡 solution path 𝑃 if no conflict is

detected in ⟨𝑃𝑠𝑘, 𝑃𝑘𝑡⟩; conflict-free partial path 𝑃 with a
new pivot arc (𝑝𝑁 , 𝑞𝑁 ), otherwise.

1 𝑃 ←←← 𝑃𝑠𝑘; (𝑝𝑁 , 𝑞𝑁 ) ←←← 𝑁 𝑜𝑛𝑒;
2 for (𝑖, 𝑗) in 𝑃𝑘𝑡 do
3 if 𝛿(𝑖, 𝑗) ∩ 𝑃 = ∅ then 𝑃 .append((𝑖, 𝑗));
4 else
5 if (𝑖, 𝑗) is in conflict with the first arc in 𝑃 then
6 (𝑝𝑁 , 𝑞𝑁 ) ←←← (𝑖, 𝑗);
7 else if 𝑟𝑎𝑛𝑑 𝑜𝑚(0, 1) = 0 then
8 (𝑝𝑁 , 𝑞𝑁 ) ←←← (𝑖, 𝑗);
9 else
10 (𝑘, 𝑙) ←←← first arc of P belonging to 𝛿(𝑖, 𝑗);
11 𝑃 ←←← ⟨(𝑝, 𝑞) ∈ 𝑃 ∶ (𝑝, 𝑞) precedes (𝑘, 𝑙)⟩;
12 (𝑝𝑁 , 𝑞𝑁 ) ←←← (𝑘, 𝑙);
13 end
14 return 𝑃 , (𝑝𝑁 , 𝑞𝑁 );
15 end
16 end
17 return 𝑃 , (𝑝𝑁 , 𝑞𝑁 );

path 𝑃 , which is a 𝑠-𝑡 path if no conflicting arc pair has been detected
among all the arcs of 𝑃𝑠𝑘 and 𝑃𝑘𝑡. However, if any conflict is detected,
𝑃 is a partial path, and a pivot arc (𝑝𝑁 , 𝑞𝑁 ), i.e., the first excluded arc
f 𝑃𝑘𝑡, is returned.

In the initialization phase, 𝑃 is assigned the partial path 𝑃𝑠𝑘,
hereas (𝑝𝑁 , 𝑞𝑁 ) is initialized to 𝑁 𝑜𝑛𝑒 (Line 1). Then, the arcs in

he candidate path 𝑃𝑘𝑡 are processed in the order they appear until a
violated conflict has been detected or the whole path has been analyzed

(Lines 2–16). In particular, each arc (𝑖, 𝑗) ∈ 𝑃𝑘𝑡 is added to 𝑃 if such
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an insertion does not compromise the feasibility of 𝑃 , i.e., if (𝑖, 𝑗) does
ot conflict with any of the arcs currently in 𝑃 (Line 3), that is, with a
light abuse of notation, if 𝛿(𝑖, 𝑗) ∩𝑃 = ∅. Otherwise, if (𝑖, 𝑗) is in conflict
ith the first arc of 𝑃 , then (𝑖, 𝑗) becomes the first excluded arc of 𝑃𝑘𝑡,

.e., (𝑝𝑁 , 𝑞𝑁 ) = (𝑖, 𝑗); in the remaining cases, (𝑖, 𝑗) is selected as pivot arc
ith half the probability; with the same probability, the choice falls on

he first arc (𝑘, 𝑙) ∈ 𝛿(𝑖, 𝑗) ∩𝑃 , namely the first arc of 𝑃 conflicting with
𝑖, 𝑗), and all the arcs placed after (𝑘, 𝑙) are removed from 𝑃 (Lines 7–12,
here random(𝑥, 𝑦) is a function returning integer values between 𝑥 and
with discrete uniform probability). In both cases, the execution stops

nd the extended partial path is returned, along with the selected pivot
rc (Line 14). If no conflicting arcs are detected in any iteration, at the

end of the execution 𝑃 is a conflict-free 𝑠-𝑡 path, coinciding with the
concatenation of 𝑃𝑠𝑘 and 𝑃𝑘𝑡. Such a complete path is returned along

ith the unassigned pivot arc (𝑝𝑁 , 𝑞𝑁 ) (Line 17).

3.1.1. Computational complexity
The first procedure, ValidatePath, plays a critical role in the whole

process, as it is invoked every time that a conflict is detected while
uilding an augmenting path and involves operations that scale

quadratically with the size of the input. Indeed, the most expensive
operations carried out by this procedure involve checking for conflicts
between the provided conflict-free partial path 𝑃𝑠𝑘 and the candidate
completing path 𝑃𝑘𝑡 and building the conflict-free path 𝑃 , accordingly
(Lines 2–3). At the beginning, 𝑃 is set to 𝑃𝑠𝑘. Then, in the worst case,
no conflict is detected and an arc is added to 𝑃 at each iteration of
the for loop in Line 2 of Algorithm 3. Verifying, in Line 3, that no arc
is contained in both the two lists 𝑃 and 𝛿(𝑖, 𝑗) for a given (𝑖, 𝑗) ∈ 𝑃𝑘𝑡,
requires at most |𝛿(𝑖, 𝑗)| ⋅ |𝑃 | comparisons. As the size of 𝑃 at iteration
ℎ can be written as |𝑃𝑠𝑘| + ℎ, the overall number of these comparisons
in the for loop is upper bounded by ∑

|𝑃𝑘𝑡|
ℎ=1

(

𝐷max
(

|𝑃𝑠𝑘| + ℎ
))

, where
𝐷max denotes the maximum number of conflicts involving an arc of
𝐺. This may be rewritten as 𝐷max⋅

(

|𝑃𝑠𝑘||𝑃𝑘𝑡| +
|𝑃𝑘𝑡|(|𝑃𝑘𝑡|−1)

2

)

, that is the
worst-case computational complexity of the ValidatePath procedure is

(

𝐷max⋅max
(

|𝑃𝑠𝑘||𝑃𝑘𝑡|, |𝑃𝑘𝑡|
2)), which in turn is 

(

|𝑉 |

2𝐷max
)

.
Due to its recursive nature, the computational complexity of the

ComputeNextPath algorithm depends on the maximum number of re-
cursions occurring during the computation. In terms of the underlying
network, this corresponds to the maximum number of pivot arcs that
may be identified in Line 10 of Algorithm 2. As the capacity of ev-
ery identified pivot arc is set to zero in Line 5 of the algorithm,
he maximum number of pivots, as well as the maximum number of
ecursions, corresponds to the number of arcs of the network, i.e., |𝐴|.
urthermore, the computational time complexity associated with each
ecursive call of the algorithm results from the sum of the complex-
ties of both the CapacityScaling and ValidatePath procedures, the
ormer being 

(

|𝐴|2 log2 𝐶max
)

(Cormen et al., 2022), where 𝐶max
enotes the largest capacity associated with an arc of 𝐺, and the latter
eing 

(

|𝑉 |

2𝐷max
)

. Thus, the overall worst-case complexity of the
omputeNextPath algorithm is 

(

|𝐴|
(

|𝐴|2 log2 𝐶max + |𝑉 |

2𝐷max
))

.
Finally, the complexity of MFPC-Greedy depends on the number of

times the ComputeNextPath procedure is invoked. In the worst case,
the maximum flow ∗ is achieved using ∗ different augmenting paths,
each one carrying a unit flow. Thus, the worst-case time complexity of

FPC-Greedy is 
(

∗ (
|𝐴|

(

|𝐴|2 log2 𝐶max + |𝑉 |

2𝐷max
)))

.

3.2. Carousel greedy

In the following, we provide a detailed description of the Carousel
reedy (CG) algorithm designed for the MFPC. CG is based on the
reedy procedure introduced in Section 3.1.

Fig. 3 schematically illustrates how our CG algorithm works. CG
tarts from a feasible solution provided by MFPC-Greedy procedure.
s described in Section 3.1, such a solution is composed of a sequence
= ⟨𝑃1, 𝑃2,… , 𝑃

|𝑆|⟩ of conflict-free augmenting paths, appearing in the
order they have been selected by the greedy algorithm. This sequence
6 
𝑆 is iteratively updated by CG based on two parameters 𝛼 and 𝛽.
More in detail, CG removes from 𝑆 the last 𝛽|𝑆| augmenting paths,
obtaining the so-called carousel start. In this context, 𝛽 denotes the
percentage of augmenting paths to be removed from the tail of 𝑆. At
this point, CG carries out 𝛼|𝑆| iterations, where 𝛼 is an integer value
used to define the overall number of iterations of the algorithm. In each
iteration, the left-most item, i.e., the oldest selected augmenting path,
is removed from 𝑆 and the ComputeNextPath procedure is exploited
o obtain another conflict-free augmenting path, if any, with respect
o the updated 𝑆. In Fig. 3, at the first iteration, CG removes the

oldest path 𝑃1 and ComputeNextPath procedure adds the path 𝑃4. At
he second iteration, the oldest path 𝑃2 is removed and path 𝑃5 is
dded, and so on. After the last iteration, the resulting collection of
on-conflicting augmenting paths 𝑆 = ⟨𝑃5, 𝑃6, 𝑃7⟩ is completed by
nvoking the MFPC-Greedy procedure that represents the final step of
he procedure.

Unlike the classical CG approach, introduced in Cerrone et al.
(2017), where a feasible solution is obtained only at the end of the
computation, the designed CG algorithm for the MFPC, by construction,
yields a feasible solution at the end of each iteration. Furthermore, to
enhance the exploration of the solution space, when an augmenting
path is excluded from the current solution, its first arc is temporarily
assigned a residual capacity of zero. This is done to prevent the reselec-
tion of the same augmenting path in the subsequent iteration. Likewise,
a frequency vector is kept to record the occurrences of each generated
path, and the arcs of the most frequently chosen path have their
capacity temporarily set to zero. Moreover, the MFPC-Greedy algorithm
is run at the end of each iteration, thus obtaining an intermediate
complete solution, i.e., a collection of paths that the algorithm is no
longer able to extend with additional augmenting paths. Although the
paths generated to obtain such a solution are not added to 𝑆, the value
of the obtained solution is still compared with the incumbent one, po-
tentially leading to an update of the best solution found. Contextually,
a collection  of all the paths computed by the algorithm is built and
returned at the end of the computation.

Fig. 4 provides an example of how CG works. To simplify the
description of the example, we do not show how the residual network
is updated at each iteration. Fig. 4(a) shows a feasible solution com-
posed of three conflict-free augmenting paths: ⟨(𝑠, 𝑏), (𝑏, 𝑎), (𝑎, 𝑒), (𝑒, 𝑡)⟩,
(𝑠, 𝑏), (𝑏, 𝑐), (𝑐 , 𝑡)⟩ and ⟨(𝑠, 𝑎), (𝑎, 𝑒), (𝑒, 𝑡)⟩. The flow sent through these
aths is 5. Carousel Greedy creates the carousel start solution by remov-
ng the last generated augmenting path ⟨(𝑠, 𝑎), (𝑎, 𝑒), (𝑒, 𝑡)⟩ (Fig. 4(b)).

Then it starts the iterations on this solution. At the first iteration, CG
emoves the first augmenting path ⟨(𝑠, 𝑏), (𝑏, 𝑎), (𝑎, 𝑒), (𝑒, 𝑡)⟩ and, to avoid
ebuilding the same augmenting path, it sets the residual capacity of the
irst arc (𝑠, 𝑏) of this path equal to zero (Fig. 4(c)). CG completes the
teration by invoking the ComputeNextPath procedure on 𝑠 obtaining
he new augmenting path ⟨(𝑠, 𝑎), (𝑎, 𝑐), (𝑐 , 𝑒), (𝑒, 𝑡)⟩(Fig. 4(d)) with flow

3. The total flow is now equal to 6.
The pseudocode of the designed CG algorithm is reported in Algo-

ithm 4, which takes as input the original graph 𝐺, the source node
𝑠, the sink node 𝑡 and the 𝛼 and 𝛽 parameters. At the end of the
omputation, the output of the algorithm consists of the best solution
ound 𝑆∗, i.e., an ordered list of conflict-free augmenting paths yielding

the highest known flow, along with the collection  of all the generated
augmenting paths and a frequency vector 𝜏, where 𝜏𝑃 indicates the
number of times that the path 𝑃 has been added to a partial solution
by the algorithm, for each 𝑃 ∈  . The collection  and the frequency
vector 𝜏 play a key role in the initialization phase of the KO algorithm,
roviding information used to populate the kernel set.

In the initialization phase, the MFPC-Greedy procedure is used to
obtain a starting initial solution 𝑆 = ⟨𝑃1,… , 𝑃

|𝑆|⟩, along with the
associated flow vector 𝛥 and residual graph 𝐺𝑓 (Line 1). Then, the best
solution found 𝑆∗, the related flow value 𝑧∗, the collection of generated
paths  and the frequency vector 𝜏 are initialized, accordingly (Lines 2–
3). At the beginning, 𝜏 indicates that each path of the starting solution
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Fig. 3. Scheme of the Carousel Greedy algorithm designed for the MFPC.
Fig. 4. Example of the Carousel Greedy algorithm.
has been chosen exactly once. Subsequently, the so-called carousel start
𝑆𝐶 is obtained, by removing from 𝑆 the last 𝛽% of its paths (Line 4),
and the 𝛼|𝑆| CG iterations are performed (Lines 5–19).

At the beginning of each iteration, the oldest path chosen according
to the greedy strategy, denoted by 𝑃𝑂, is removed from 𝑆𝐶 (Line 6),
then the residual graph 𝐺𝑓 associated with the flow 𝑓 induced by the
resulting solution 𝑆𝐶 is computed and all the arcs conflicting with some
of the used arcs are removed from 𝐺𝑓 (Lines 7–8). Subsequently, the
path 𝑃𝜏𝑚𝑎𝑥 ∈  with the highest frequency is selected, breaking ties
by preferring the earlier generated one (Lines 9–10). After the removal
of 𝑃𝑂 from 𝑆, the residual capacity of its first arc is set to zero (Line
7 
11), in order to assure that such a path cannot be immediately rebuilt
by ComputeNextPath. This operation allows the selection of new paths
that are enough different from 𝑃𝑂. Unfortunately, this strategy did not
prove effective when applied on the most frequent path 𝑃𝜏𝑚𝑎𝑥 . Indeed,
during the computational tests, we observed that, by forbidding only
the first arc of 𝑃𝜏𝑚𝑎𝑥 , the new path identified by ComputeNextPath is
usually very similar to 𝑃𝜏𝑚𝑎𝑥 . This may be justified by the fact that the
most frequent paths typically differ for a few arcs. As a consequence,
by forbidding only the first arc, the procedure would often identify
another frequent path that is already in  . Since our aim is to obtain
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Algorithm 4: MFPC-CarouselGreedy
Data: Original graph 𝐺; source node 𝑠; sink node 𝑡; 𝛼 and 𝛽

parameters.
Result: Best solution found 𝑆∗; collection  of all the

augmenting paths generated during the computation;
frequency vector 𝜏.

1 (𝑆 , 𝛥, 𝐺𝑓 ) ←←← MFPC-Greedy(𝐺 , 𝑠, 𝑡);
2 𝑆∗ ←←← 𝑆; 𝑧∗ ←←← 𝑧(𝑆);
3  ←←← {𝑃 ∶ 𝑃 ∈ 𝑆}; 𝜏𝑃 ←←← 1, ∀ 𝑃 ∈ 𝑆;
4 initialize the carousel start 𝑆𝐶 with the first ⌊(1 − 𝛽)|𝑆|⌋ paths

in 𝑆;
5 for 𝑘 ∈ {1,… , 𝛼|𝑆|} do
6 remove the oldest path 𝑃𝑂 from 𝑆𝐶 ;
7 compute the residual network 𝐺𝑓 of 𝐺 w.r.t. the flow 𝑓

induced by 𝑆𝐶 ;
8 remove from 𝐺𝑓 all the arcs in conflict with some of the

arcs of any path in 𝑆𝐶 ;
9 let 𝜏max ← max𝑃∈{𝜏𝑃 } be the highest frequency of a path

in  ;
10 let 𝑃𝜏𝑚𝑎𝑥 be the oldest among the paths in  with frequency

𝜏max;
11 set to zero the residual capacity of the first arc in 𝑃𝑂 and

of all the arcs in 𝑃𝜏𝑚𝑎𝑥 ;
12 (𝑃 , 𝛥𝑃 ) ←←← ComputeNextPath(𝐺𝑓 , 𝑠, 𝑡, ⟨⟩, 𝑁 𝑜𝑛𝑒);
13 if 𝑃 ≠ ⟨⟩ then
14  ←←←  ∪ {𝑃 }; 𝜏𝑃 ←←← 𝜏𝑃 + 1;
15 add 𝑃 to 𝑆𝐶 and update 𝑓 and 𝐺𝑓 , accordingly;
16 end
17 obtain an intermediate complete solution 𝑆𝐶+ by running

MFPC-Greedy(𝐺 , 𝑠, 𝑡) with the starting partial solution
𝑆 = 𝑆𝐶 ;

18  ←←←  ∪ {𝑃 }, 𝜏𝑃 ←←← 𝜏𝑃 + 1,∀ 𝑃 ∈ 𝑆𝐶+ ⧵ 𝑆𝐶 ;
19 if 𝑧∗ ≤ 𝑧(𝑆𝐶+) then 𝑆∗ ←←← 𝑆𝐶+; 𝑧∗ ←←← 𝑧(𝑆𝐶+);
20 end
21 return 𝑆∗,  , 𝜏;

a collection  containing paths that are as different as possible from
each other, we opted for a stronger policy that forbids the selection
of all the arcs of 𝑃𝜏𝑚𝑎𝑥 . At this point, the ComputeNextPath procedure
is used to identify the next most promising non-conflicting path (Line
12). If any augmenting path 𝑃 is found, it is added to the collection
 and the number 𝜏𝑃 of times 𝑃 has been chosen is updated, as
well as the current solution 𝑆𝐶 , the current flow 𝑓 and the resulting
residual graph 𝐺𝑓 (Lines 13–16). Finally, a customized version of the
MFPC-Greedy algorithm that receives a starting solution as an addi-
ional input, is used to get an intermediate complete solution. Such a
ustomized version is obtained by modifying Lines 1–3 in Algorithm

1 in such a way that 𝑆 is initialized with an input starting solution
consisting of a sequence of augmenting paths, 𝛥 is the corresponding
sequence of flows associated with the paths in 𝑆, while the flow 𝑓
and the residual graph 𝐺𝑓 are built accordingly. In this context, 𝑆𝐶 is
provided to the MFPC-Greedy algorithm as starting solution (Line 17).
According to the resulting solution, denoted by 𝑆𝐶+, the occurrences of
ach path and, possibly, the best-found solution, are updated (Lines 18–

19). Note that, since 𝑆𝐶 is not modified, this operation has no impact
n the current solution, however, it may influence the computation
f the most frequently chosen path 𝑃𝜏𝑚𝑎𝑥 at the next iteration. In the
nd, the algorithm returns the best solution found 𝑆∗, the collection of
enerated paths  and the frequency vector 𝜏.

3.3. Kernel search

In this subsection, we describe the Kernel Search (KS) algorithm
developed for the MFPC. As aforementioned, the idea behind the KS
8 
framework is to identify the most promising variables of a MILP model
and construct and solve restricted subproblems based on them. The set
of promising variables (called the kernel set) is not computed through a
one-shot procedure but changes dynamically during the search. The ini-
tial kernel set is identified by using information (values of variables and
reduced costs) provided by the optimal solution of the linear relaxation
of the MILP problem. In particular, initial kernel set (𝛬) consists of all
ariables with a value greater than zero in the optimal solution of the
inear relaxation. The remaining variables are sorted in non-decreasing
rder of the absolute value of their reduced costs and partitioned into
 collection of sets named buckets. At this point, the algorithm solves

a restricted MILP problem by considering only the variables inside 𝛬
hile setting the remaining ones to zero. The just obtained solution, if
ny, is improved in the next steps by iteratively solving a sequence of
estricted MILP problems. Each subproblem is obtained by considering

the variables of 𝛬 together with those belonging, in turn, to each of the
buckets. At each iteration, the 𝛬 set is possibly updated by including
the variables belonging to the bucket that have been selected in the
solution of the current restricted MILP.

In our KS we use the strong formulation MFPCs to generate the
nitial kernel set 𝛬, since its linear relaxation, yielding tighter bounds,
ay provide better insights about the optimal solution of the problem

with respect to the weak formulation MFPCw. Conversely, MFPCw
proves to be faster in solving the restricted MILP problems (i.e., kernel
set + bucket). To apply KS to the solution of the MFPC, one should
notice that the information provided by the continuous relaxation is
imited since the objective function only includes the max flow variable
nd thus reduced costs are not good predictors of promising variables.
or this reason, we decided to build the kernel set and the buckets,
ccording to the values of the flow variables 𝑓𝑖𝑗 only. Let us observe
hat, if a variable 𝑓𝑖𝑗 is assigned to the kernel set or to a bucket, the
orresponding 𝑥𝑖𝑗 is also assigned to it. Moreover, if 𝑓𝑖𝑗 takes the value
ero (i.e., no flow crosses the arc (𝑖, 𝑗)) although the corresponding 𝑥𝑖𝑗
s positive, the variable is not included in the promising set (indeed an
quivalent solution can be obtained by setting 𝑥𝑖𝑗 = 0).

KS can be divided into two main phases: Initialization and Improve-
ent.

• Initialization phase. During the Initialization phase, KS solves
the LP-MFPCs problem, obtaining a solution (𝑓𝐿𝑃 , 𝑥𝐿𝑃 ). KS sorts
the pairs of variables (𝑓𝑖𝑗 , 𝑥𝑖𝑗 ) according to non-increasing values
of 𝑓𝐿𝑃 . Let 𝐿> = ⟨(𝑓𝑖𝑗 , 𝑥𝑖𝑗 ) ∶ 𝑓𝐿𝑃

𝑖𝑗 > 0⟩ be the sorted list of the
most promising variables. The next step of the algorithm consists
of defining a priority among the zero-variables, too. Since reduced
costs do not provide any information about the relevance of out-
of-the-basis variables, for each variable 𝑓𝑖𝑗 such that 𝑓𝐿𝑃

𝑖𝑗 = 0, we
compute 𝜌𝑖𝑗 as the number of conflicts among the arc (𝑖, 𝑗) and the
arcs associated with variables in 𝐿>. KS sorts, in non-decreasing
order of 𝜌𝑖𝑗 , the pairs of variables (𝑓𝑖𝑗 , 𝑥𝑖𝑗 ) such that 𝑓𝐿𝑃

𝑖𝑗 is null.
Ties are broken giving higher priority to the arcs with greater
capacity since the lower 𝜌𝑖𝑗 the higher the probability that the
arc (𝑖, 𝑗) may be selected in optimal/near-optimal solution. We
indicate by 𝐿= = ⟨(𝑓𝑖𝑗 , 𝑥𝑖𝑗 ) ∶ 𝑓𝐿𝑃

𝑖𝑗 = 0⟩ the resulting sorted list.
Finally, we refer to 𝐿 as the sorted list of all pairs of variables
obtained by concatenating 𝐿> and 𝐿=. Since variables in 𝐿> are
more promising than variables in 𝐿=, the former precedes the
latter in the global list 𝐿.
After the construction of 𝐿, KS populates the initial kernel set
𝛬 with the first 𝜆 pairs of 𝐿, where 𝜆 is an integer parameter
defined by the user. The remaining pairs of 𝐿 are partitioned
into a collection of buckets of fixed size 𝐵 = ⟨𝐵1,… , 𝐵𝑞⟩ with
𝑞 = ⌈

|𝐴|−𝜆
𝛾 ⌉ and 𝛾 the size of each bucket, possibly except the

last one. Finally, KS solves the first restricted problem on the
initial kernel set MFPCw(𝛬), obtaining a starting feasible solution
(𝑓 ∗, 𝑥∗) of MFPC, with a corresponding value of flow equal to
 (𝑓 ∗, 𝑥∗).
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Fig. 5. Kernel search diagram.
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It is worth noting that, the kernel size 𝜆 and the bucket size 𝛾
represent the two key parameters of a KS-based algorithm and an
appropriate choice of their values is crucial for the effectiveness
and efficiency of the resulting algorithm.

• Improvement phase. During this phase, KS solves a sequence of
𝑞 restricted problems each of which is formulated by considering
the variables in the current kernel set 𝛬 plus those belonging to a
bucket. More in detail, at iteration 𝑟, KS solves the restricted prob-
lem MFPCw(𝛬∪𝐵𝑟) with the following two additional constraints:
∑

(𝑖,𝑗)∈𝐴𝑟

𝑓𝑖𝑗 ≥ 1 (3)

 ≥  (𝑓 ∗, 𝑥∗). (4)

where 𝐴𝑟 ⊂ 𝐴 are the arcs associated with variables in bucket
𝐵𝑟. Note that, in the computational experiments described in
Section 4, constraint (4) has been implemented by using the lower
cutoff parameter of the CPLEX solver.
Constraint (3) requires that at least one of the 𝑓𝑖𝑗 variables in 𝐵𝑟
takes a value greater than or equal to 1 in the solution, whereas
constraint (4) imposes that the value of the solution identified at
iteration 𝑟 should be better than or equal to the value of the best
incumbent integer solution value  (𝑓 ∗, 𝑥∗).
Notice that, because of constraints (3) and (4), MFPCw(𝛬 ∪ 𝐵𝑟)
may be infeasible: in this case the next restricted problem con-
sidering bucket 𝐵𝑟+1 is analyzed. If, on the contrary, a feasible
solution is found, then the incumbent solution is possibly updated
and the kernel set 𝛬 is extended by including the pairs of variables
(𝑓𝑖𝑗 , 𝑥𝑖𝑗 ) in 𝐵𝑟 having a positive value for 𝑓𝑖𝑗 in the provided
solution. It is easy to see that the larger the size of the restricted
problems, the higher the quality of the final solution. However,
larger restricted problems require more computing time to be
solved. The right trade-off is determined through the setting of
parameters 𝜆 and 𝛾. Finally, notice that we decided to implement
a simple KS procedure. It is obvious that, given the relevance of
variable sorting in KS and the limited information provided by the
optimal solution of the continuous relaxation, the implementation
of an iterative variant of the method where buckets are scrolled
more than once might be beneficial.

The diagram shown in Fig. 5 graphically depicts the main steps of
the KS-based algorithm designed for the MFPC.

3.4. Kernousel

In this section, we introduce a hybrid heuristic algorithm for the
MFPC, named Kernousel (KO), which consists in enhancing a KS-based
 w
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algorithm by exploiting a CG algorithm in the initialization phase. KO
shows a fast and easy-to-implement alternative approach to solving the
inear relaxation of the problem for the initialization of the kernel set.
he necessity to have this alternative approach arises in optimization
roblems where, as in our case, the solution of the linear relaxation
oes not provide useful information to predict promising variables,
hus penalizing the effectiveness of the KS algorithm. The idea behind
he proposed approach is to exploit the knowledge gained by the
G algorithm during its exploration of the solution space to obtain a
ore effective partitioning of the variables into the kernel set and the

uckets. To this end, we do not use only the final solution 𝑆 produced
by CG, but we also collect in  all the conflict-free augmenting paths
uilt by the algorithm during the computation. More in detail, to each
rc belonging to at least one path of  , we assign a score equal to
he number of occurrences (frequency) of this arc in all the paths
f  . Therefore, the collection  allows us to have a more accurate

classification of the most promising variables since the higher the score
associated with an arc, the more promising the related variable, as it
has been used in several conflict-free augmenting paths. KO populates
the kernel set 𝛬 with all the variables associated with the arcs of S.
If |𝛬| < 𝜆, then the kernel set is completed by using first the arcs
inside the paths of  , according to their frequency, and later with the
arcs inside 𝐿. As for KS, once 𝛬 has been populated, KO partitions the
remaining |𝐴| − 𝜆 variables into a collection of buckets of fixed size
𝐵 = ⟨𝐵1,… , 𝐵𝑞⟩ with 𝑞 = ⌈

|𝐴|−𝜆
𝛾 ⌉ and 𝛾 the size of each bucket, possibly

except the last one. Once the kernel set and the buckets have been
nitialized through the information collected by the CG algorithm, the

remaining steps of the classical KS are performed.
The block diagram shown in Fig. 6 graphically depicts the main

teps of a KO-based algorithm designed for the MFPC. First, the algo-
ithm invokes the CG algorithm to obtain the feasible solution 𝑆 and

the set  of augmenting paths generated during the computation. Then,
it solves the linear relaxation of MFPCs and builds the sorted list 𝐿 of
variables (see Section 3.3).  and 𝐿 are then used to create the initial
kernel set and the buckets. In the last step, the algorithm finds a feasible
solution 𝑆′ of MFPC by solving MFPCs(𝛬) problem and then sets the
best solution between 𝑆 and 𝑆′ as the incumbent one. The improvement
phase of KO is the same as the one of KS. We now describe in more
detail the initialization phase of KO through its pseudocode reported
in Algorithm 5.

This procedure builds the initial kernel set, as well as the collection
of buckets, and provides a starting feasible solution. More in detail, it
takes as input the graph 𝐺, the source node 𝑠 and the sink node 𝑡, as

ell as the CG parameters 𝛼 and 𝛽, the kernel size 𝜆 and the bucket
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Fig. 6. Kernousel diagram.
Algorithm 5: Kernousel-Initialization
Data: Graph 𝐺; source node 𝑠; sink node 𝑡; GC parameters 𝛼

and 𝛽; minimum kernel size 𝜆; bucket size 𝛾.
Result: Kernel set 𝛬; buckets collection 𝐵; incumbent solution

(𝑓 ∗, 𝑥∗).
1 (𝑆 , , 𝜏) ←←← MFPC-CarouselGreedy(𝐺 , 𝑠, 𝑡, 𝛼 , 𝛽);
2 𝐸 = {(𝑖, 𝑗) ∶ ∃ 𝑃 ∈  s.t. (𝑖, 𝑗) ∈ 𝑃 };
3 𝜏𝑖𝑗 =

∑

𝑃∈∶(𝑖,𝑗)∈𝑃 𝜏𝑃 ,∀ (𝑖, 𝑗) ∈ 𝐸 ;
4 (𝑓 ∗, 𝑥∗) ← incumbent solution built from 𝑆;
5 𝛬 ←←← {(𝑓𝑖𝑗 , 𝑥𝑖𝑗 ) ∶ (𝑖, 𝑗) ∈ 𝑃 , 𝑃 ∈ 𝑆};
6 𝐿̄ ← ⟨(𝑓𝑖𝑗 , 𝑥𝑖𝑗 ) ∶ (𝑖, 𝑗) ∈ 𝐸 , (𝑓𝑖𝑗 , 𝑥𝑖𝑗 ) ∉ 𝛬⟩;
7 sort 𝐿̄ in nonincreasing order of 𝜏𝑖𝑗 , (𝑖, 𝑗) ∈ 𝐸 ;
8 if |𝛬| < 𝜆 then
9 Add to 𝛬 the first min(|𝐿̄|, 𝜆 − |𝛬|) elements of 𝐿̄;
10 end
11 (𝑓𝐿𝑃 , 𝑥𝐿𝑃 ) ←←← LP-MFPCs;
12 Build 𝐿>, 𝐿= and𝐿;
13 Remove from 𝐿 all the pairs already present in 𝛬;
14 if |𝛬| < 𝜆 then
15 Move from 𝐿 to 𝛬 the first 𝜆 − |𝛬| elements of 𝐿;
16 end
17 𝑛𝐵←←← ⌈|𝐿|∕𝛾⌉;
18 𝐵 ←←← ⟨𝐵1,… , 𝐵𝑛𝐵 ⟩; // collection of buckets each with at most 𝛾 pairs

of variables
19 (𝑓 ′, 𝑥′) ←←← MFPCw(𝛬);
20 if  (𝑓 ′ , 𝑥′ ) >  (𝑓 ∗, 𝑥∗) then
21 (𝑓 ∗, 𝑥∗) ←←← (𝑓 ′, 𝑥′);
22 end
23 return 𝛬, 𝐵 , (𝑓 ∗, 𝑥∗);

size 𝛾 and returns the kernel set 𝛬, the collection of buckets 𝐵 and
a feasible solution (𝑓 ∗, 𝑥∗), having value  (𝑓 ∗, 𝑥∗). In Line 1, the CG
algorithm is invoked to generate a feasible solution 𝑆, the collection 
of all the paths built during the computation and the frequency vector
𝜏 indicating how many times each path has been added to a partial
solution by CG. In Line 2, the set 𝐸 is initialized as the set of arcs
belonging to at least one path generated by the CG. In Line 3, the
algorithm computes 𝜏𝑖𝑗 for each arc (𝑖, 𝑗) ∈ 𝐸 , corresponding to the
number of times the arc (𝑖, 𝑗) appears in a path generated by the CG
algorithm. Firstly, the values of the variables 𝑓 ∗ and 𝑥∗ are retrieved
from the final solution 𝑆 identified by the CG algorithm, (Line 4) and
10 
the kernel set 𝛬 is initialized with all the variables associated with the
arcs appearing in any of the paths belonging to the solution 𝑆 found
by CG (Line 5). Then, the list 𝐿̄ of variables associated with the arcs
used by the CG that have not yet been inserted into the kernel 𝛬 is built
and sorted in non-increasing order of the 𝜏𝑖𝑗 values (Lines 6–7). If the
set 𝛬 has fewer than 𝜆 elements the procedure inserts new variables
into 𝛬 taking up to the first 𝜆 − |𝛬| variables from 𝐿̄ (Lines 8–10).
Subsequently, the procedure solves LP-MFPCs (Line 11) obtaining the
solution (𝑓𝐿𝑃 , 𝑥𝐿𝑃 ), from which the lists 𝐿>, 𝐿= and 𝐿 are built (Line
12), as described in Section 3.3. On Line 13, all the variables in 𝛬 are
removed from 𝐿. The if statement at Line 14 verifies if the number of
variables inside the kernel set is still lower than its maximum size 𝜆.
If this is the case, then the first 𝜆 − |𝛬| flow variables in 𝐿, or all of
them if |𝐿| < 𝜆 − |𝛬|, are moved from 𝐿 to 𝛬 (Line 15). On Lines 17–
18, the procedure partitions the variables of 𝐿 in ⌈|𝐿|∕𝛾⌉ buckets. This
means that the first 𝛾 variables of 𝐿 are placed in 𝐵1, the subsequent
ones in 𝐵2 and so on. Consequently, all but the last bucket will have
exactly 𝛾 variables. Finally, MFPCw is solved by considering only the
variables in 𝛬 and the solution (𝑓 ′, 𝑥′) is compared with the incumbent
one (𝑓 ∗, 𝑥∗) (Lines 19–20). If the new solution yields a higher flow
value, then the incumbent solution is updated (Line 21). In the end,
the procedure returns the kernel set 𝛬, the collection of buckets 𝐵 and
the incumbent solution (𝑓 ∗, 𝑥∗).

The pseudocode of the Kernousel-Improvement procedure, imple-
menting the KS paradigm, is reported in Algorithm 6. The for loop
on Line 1 iterates over all the buckets 𝐵𝑟 ∈ 𝐵. At each iteration, the
set of variables 𝛬𝑟 is built by merging the variables of 𝛬 with the
ones of bucket 𝐵𝑟. Then, the MFPCw formulation, modified with the
introduction of constraints (3) and (4) and restricted to the variables in
𝛬𝑟, is used to solve the problem. If the problem results to be infeasible,
no further operations are carried out with the current bucket and
the procedure returns to Line 1. Otherwise, a feasible solution, better
or at least as good as the current one, is found; if strictly better,
the incumbent solution (𝑓 ∗, 𝑥∗) is updated accordingly (Line 5–7).
Furthermore, regardless of the solution value, the subset of variables
of 𝐵𝑟, having a positive flow in the just computed solution, are moved
into the kernel set (Lines 8–9). In the end, the best solution variables
(𝑓 ∗, 𝑥∗) are returned.

4. Computational tests

In this section, we present the results achieved by the CG, KS and
KO algorithms and conduct a comparative analysis with the outcomes
of the state-of-the-art algorithm for the MFPC. Our algorithms are
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Algorithm 6: Kernousel-Improvement
Data: Kernel set 𝛬; buckets collection 𝐵; incumbent solution

(𝑓 ∗, 𝑥∗).
Result: Best solution found (𝑓 ∗, 𝑥∗).

1 for 𝐵𝑟 ∈ 𝐵 do
2 𝛬𝑟 ←←← 𝛬 ∪ 𝐵𝑟;
3 (𝑓 , 𝑥̂) ←←← optimal solution of MFPCw(𝛬𝑟) + constraints (3)

and (4);
4 if (𝑓 , 𝑥̂) is feasible then
5 if  (𝑓 , 𝑥̂) >  (𝑓 ∗, 𝑥∗) then
6 (𝑓 ∗, 𝑥∗) ←←← (𝑓 , 𝑥̂);
7 end
8 𝛬̄𝑟 ←←← {(𝑓𝑖𝑗 , 𝑥𝑖𝑗 ) ∈ 𝐵𝑟 ∶ 𝑓𝑖𝑗 > 0 };
9 𝛬 ←←← 𝛬 ∪ 𝛬̄𝑟;
10 end
11 end
12 return (𝑓 ∗, 𝑥∗);

coded in Python and the mathematical formulations are solved using
CPLEX 22.1.0. All CPLEX parameters are set to their default values. The
computational tests are carried out on an Intel(R) Core(TM) i7-3770
CPU @ 3.40 GHz processor with 8 GB of RAM.

4.1. Benchmark instances and experimental settings

We tested our algorithms on the collection of benchmark instances
rovided by Şuvak et al. (2020). By construction, each instance is

constructed to have at least one feasible solution with a non-zero flow,
and its size depends on three parameters: the number of nodes (𝑛); the
arc density (𝑝 = 𝑚

𝑛(𝑛−1) , where 𝑚 denotes the number of arcs); and the
conflict density (𝑑 = 2𝑤

𝑚(𝑚−1) , where 𝑤 denotes the number of conflicting
arc pairs). Parameter 𝑛 takes value in the set {40, 50, 60, 70, 80}, 𝑝
in {0.3, 0.4, 0.5, 0.6} and 𝑑 in {0.3, 0.4, 0.5, 0.6}. For each triple (𝑛, 𝑝,
𝑑), Şuvak et al. (2020) generated two random instances; this implies
60 instances altogether. The difference between the two instances
ies in the arc capacity range 𝐼 , with 𝐼 ∈ {[10, 15], [15, 20]}. Each
nstance is assigned an ID between 1 and 160. Furthermore, accord-

ing to the number of nodes, instances 1–96 (with 𝑛 ∈ [40, 60]) and
nstances 97–160 (with 𝑛 ∈ [70, 80]) are classified as Small and Large
nstances, respectively. Table 1 reports in detail the characteristics of

each instance.
The parameters of CG, KS and KO are tuned with the widely

used Iterated Racing for Automatic Algorithm Configuration (IRACE)
package (López-Ibáñez et al., 2016) that automatically determines the
parameter values selecting them from a finite pool of parameter con-
figurations. To ensure a sufficiently diverse sample of instances based
on arc capacity ranges, the tuning process alternates between selecting
nstances with 𝐼 values in the ranges [10,15] and [15,20]. More in
etail, we start by selecting the instance with ID equal to 1, then
e process the remaining instances in increasing order of ID and we

epeatedly select the one having both a different arc capacity range (𝐼)
nd at least one of the three remaining parameters (𝑛, 𝑝, 𝑑) different
ith respect to the last selected instance. From Table 1, we can observe

that the range 𝐼 for instance 1 is [10, 15], then the next instance selected
according to this policy is instance 4 because instance 2 has the same
parameters 𝑛, 𝑝 and 𝑑 as instance 1, while instance 3 has the same arc
capacity range as instance 1. Similarly, the next selected instance is the
one with ID equal to 5, as both the value of parameter 𝑑 and the range
𝐼 are different from the ones of instance 4. By repeating this process
until all the instances have been processed, the selected instances are
the ones with IDs 1, 4, 5, 8, 9, 12, 13,… , 160, for a total of 80 instances.
Using IRACE on this subset of instances allowed us to include at least

ne instance for each combination of characteristic values during the
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tuning phase. To verify that this choice did not introduce overfitting,
e conducted additional tests using a configuration obtained by tuning
n only 10% of the instances. The results confirmed that for at least
8% of the instances, the solution values remained unchanged, while
he comparison of the main performance indicators with those of the
tate-of-the-art approach remained consistent, ruling out overfitting.
ince this alternative configuration was faster but slightly less effective,

as it identifies 13 new best-known solutions instead of 15, we show in
the following the results obtained with the configuration identified by
IRACE using the above-mentioned set of 80 instances.

The parameter values are reported in Table 2. The first two columns
report the parameter name (Parameter) and its description (Description),
while the third column (Range Values) shows, for each parameter,
the possible values that IRACE, with a tuning budget of 10 000 runs,
sed to compute the best configuration. The recommended parameter
onfigurations are displayed under the headings CG, KS, and KO for
arousel Greedy, Kernel Search, and Kernousel, respectively. These
arameters were adopted in all our computational experiments.

The range of 𝜆 values, provided to IRACE, was defined with the aim
to have a size of the initial kernel set that, on one hand, is sufficiently
large to allow the construction of an initial feasible solution (possibly
ifferent from the one already provided by CG) and, on the other
and, sufficiently small to create a restricted problem that is solvable

in a reasonable amount of time. The range of 𝛾 values is chosen to
btain an appropriate trade-off between the size and the number of
estricted problems generated during the computation. Notice that the
value recommended by IRACE is different for KS and KO. Likely due

o the policy employed for constructing the kernel set and buckets, KS
equires a larger bucket size compared to KO. This suggests that KS
ncreases the bucket size to offset a less efficient sorting of variables, a
eature achieved more effectively by KO.

It is noteworthy that the value of 𝛼 employed by CG and KO is
otably higher than that typically found in the CG literature. In the
ase of KO, this is because higher values of 𝛼 facilitate an increase in
he overall number of conflict-free augmenting paths generated by CG.
onsequently, more promising variables are available during the KO

nitialization phase for constructing the kernel set. In the context of
G, a higher 𝛼 value implies a greater number of iterations, providing
ore opportunities to enhance the quality of the final solution.

4.2. Computational results with a fixed time limit

The first computational comparison we carry out concerns the
ffectiveness of CG, KS, and KO when the same time limit is set for
ll of them. To this end, we run the three algorithms, on the same
achine, with a time limit equal to 5, 20, 35, and 50 s. These values

re chosen sufficiently small, with respect to the average computational
imes observed for the three algorithms on large instances (see Table 4),
o ensure that they affect their effectiveness. The results of this compar-

ison are shown in Fig. 7 in which the graphics show how the quality of
the solutions is influenced by the computational time provided to the
algorithms. The 𝑥-axis reports the set of all instances, while the 𝑦-axis
shows the percentage gap from the best solution. This gap is computed
with the formula 100 × 𝑏𝑒𝑠𝑡−𝑎𝑙 𝑔

𝑏𝑒𝑠𝑡 , where best is equal to the highest value
ound by the three algorithms within the imposed time limit, while alg
s the solution value of the considered algorithm. To better highlight
he impact of the time limit, for each algorithm we sort the instances
ccording to the percentage gap, in non-decreasing order. This means
hat, on the 𝑥-axis, the sequence of instances can be different for the
hree algorithms but this is not relevant for the purposes of the test.
inally, we recall here that the starting solution of KO is the feasible
olution provided by CG (see Kernousel-Initialization). Therefore, if CG
eturns a feasible solution, within the time limit, then KO will return a
olution at least as good as that of the CG.

From the result in Fig. 7(a) we observe that, with a time limit of 5 s,
the results of CG and KO are very similar. Indeed, CG finds the best
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Table 1
Characteristics of the test instances.

ID n p d I ID n p d I ID n p d I ID n p d I

1 40 30% 30% [10, 15] 41 50 40% 30% [10, 15] 81 60 50% 30% [10, 15] 121 70 60% 30% [10, 15]
2 40 30% 30% [15, 20] 42 50 40% 30% [15, 20] 82 60 50% 30% [15, 20] 122 70 60% 30% [15, 20]
3 40 30% 40% [10, 15] 43 50 40% 40% [10, 15] 83 60 50% 40% [10, 15] 123 70 60% 40% [10, 15]
4 40 30% 40% [15, 20] 44 50 40% 40% [15, 20] 84 60 50% 40% [15, 20] 124 70 60% 40% [15, 20]
5 40 30% 50% [10, 15] 45 50 40% 50% [10, 15] 85 60 50% 50% [10, 15] 125 70 60% 50% [10, 15]
6 40 30% 50% [15, 20] 46 50 40% 50% [15, 20] 86 60 50% 50% [15, 20] 126 70 60% 50% [15, 20]
7 40 30% 60% [10, 15] 47 50 40% 60% [10, 15] 87 60 50% 60% [10, 15] 127 70 60% 60% [10, 15]
8 40 30% 60% [15, 20] 48 50 40% 60% [15, 20] 88 60 50% 60% [15, 20] 128 70 60% 60% [15, 20]
9 40 40% 30% [10, 15] 49 50 50% 30% [10, 15] 89 60 60% 30% [10, 15] 129 80 30% 30% [10, 15]
10 40 40% 30% [15, 20] 50 50 50% 30% [15, 20] 90 60 60% 30% [15, 20] 130 80 30% 30% [15, 20]
11 40 40% 40% [10, 15] 51 50 50% 40% [10, 15] 91 60 60% 40% [10, 15] 131 80 30% 40% [10, 15]
12 40 40% 40% [15, 20] 52 50 50% 40% [15, 20] 92 60 60% 40% [15, 20] 132 80 30% 40% [15, 20]
13 40 40% 50% [10, 15] 53 50 50% 50% [10, 15] 93 60 60% 50% [10, 15] 133 80 30% 50% [10, 15]
14 40 40% 50% [15, 20] 54 50 50% 50% [15, 20] 94 60 60% 50% [15, 20] 134 80 30% 50% [15, 20]
15 40 40% 60% [10, 15] 55 50 50% 60% [10, 15] 95 60 60% 60% [10, 15] 135 80 30% 60% [10, 15]
16 40 40% 60% [15, 20] 56 50 50% 60% [15, 20] 96 60 60% 60% [15, 20] 136 80 30% 60% [15, 20]
17 40 50% 30% [10, 15] 57 50 60% 30% [10, 15] 97 70 30% 30% [10, 15] 137 80 40% 30% [10, 15]
18 40 50% 30% [15, 20] 58 50 60% 30% [15, 20] 98 70 30% 30% [15, 20] 138 80 40% 30% [15, 20]
19 40 50% 40% [10, 15] 59 50 60% 40% [10, 15] 99 70 30% 40% [10, 15] 139 80 40% 40% [10, 15]
20 40 50% 40% [15, 20] 60 50 60% 40% [15, 20] 100 70 30% 40% [15, 20] 140 80 40% 40% [15, 20]
21 40 50% 50% [10, 15] 61 50 60% 50% [10, 15] 101 70 30% 50% [10, 15] 141 80 40% 50% [10, 15]
22 40 50% 50% [15, 20] 62 50 60% 50% [15, 20] 102 70 30% 50% [15, 20] 142 80 40% 50% [15, 20]
23 40 50% 60% [10, 15] 63 50 60% 60% [10, 15] 103 70 30% 60% [10, 15] 143 80 40% 60% [10, 15]
24 40 50% 60% [15, 20] 64 50 60% 60% [15, 20] 104 70 30% 60% [15, 20] 144 80 40% 60% [15, 20]
25 40 60% 30% [10, 15] 65 60 30% 30% [10, 15] 105 70 40% 30% [10, 15] 145 80 50% 30% [10, 15]
26 40 60% 30% [15, 20] 66 60 30% 30% [15, 20] 106 70 40% 30% [15, 20] 146 80 50% 30% [15, 20]
27 40 60% 40% [10, 15] 67 60 30% 40% [10, 15] 107 70 40% 40% [10, 15] 147 80 50% 40% [10, 15]
28 40 60% 40% [15, 20] 68 60 30% 40% [15, 20] 108 70 40% 40% [15, 20] 148 80 50% 40% [15, 20]
29 40 60% 50% [10, 15] 69 60 30% 50% [10, 15] 109 70 40% 50% [10, 15] 149 80 50% 50% [10, 15]
30 40 60% 50% [15, 20] 70 60 30% 50% [15, 20] 110 70 40% 50% [15, 20] 150 80 50% 50% [15, 20]
31 40 60% 60% [10, 15] 71 60 30% 60% [10, 15] 111 70 40% 60% [10, 15] 151 80 50% 60% [10, 15]
32 40 60% 60% [15, 20] 72 60 30% 60% [15, 20] 112 70 40% 60% [15, 20] 152 80 50% 60% [15, 20]
33 50 30% 30% [10, 15] 73 60 40% 30% [10, 15] 113 70 50% 30% [10, 15] 153 80 60% 30% [10, 15]
34 50 30% 30% [15, 20] 74 60 40% 30% [15, 20] 114 70 50% 30% [15, 20] 154 80 60% 30% [15, 20]
35 50 30% 40% [10, 15] 75 60 40% 40% [10, 15] 115 70 50% 40% [10, 15] 155 80 60% 40% [10, 15]
36 50 30% 40% [15, 20] 76 60 40% 40% [15, 20] 116 70 50% 40% [15, 20] 156 80 60% 40% [15, 20]
37 50 30% 50% [10, 15] 77 60 40% 50% [10, 15] 117 70 50% 50% [10, 15] 157 80 60% 50% [10, 15]
38 50 30% 50% [15, 20] 78 60 40% 50% [15, 20] 118 70 50% 50% [15, 20] 158 80 60% 50% [15, 20]
39 50 30% 60% [10, 15] 79 60 40% 60% [10, 15] 119 70 50% 60% [10, 15] 159 80 60% 60% [10, 15]
40 50 30% 60% [15, 20] 80 60 40% 60% [15, 20] 120 70 50% 60% [15, 20] 160 80 60% 60% [15, 20]
Table 2
Parameter settings.
Parameter Description Range values CG KS KO

𝜆 Kernel set size {150,200,250} 200 200
𝛾 Bucket size {200,250,300} 250 200
𝛼 Regulates the numberof iterations {20,30,40} 40 40
𝛽 Regulates the carouselstart solution {20%,30%,40%} 40% 40%
r
f

(

solution in 106 out of 160 instances while KO in 108 instances and
their maximum percentage gap (peak) is equal to 60%. These results
show that 5 s represents a time too small to allow KO to improve the
solution provided by CG. KS finds the best solution in 106 out of 160
instances and its peak is equal to 62%. However, the graphic shows
that there are several (39) instances where the percentage gap of KS is
greater than the one of CG and this means that even for this algorithm
5 s are not enough to overcome CG. It is worth noting that there are
several instances where the three algorithms show a percentage gap
greater than 0%. This means that the best solution is not found always
by the same algorithm but that all of them contribute to providing this
best solution. This behavior changes as the time limit increases because
he KO algorithm becomes the predominant algorithm in finding the
est solution. By increasing the time limit to 20 s (Fig. 7(b)), the

effectiveness of the three algorithms significantly changes. With respect
to the results obtained with the time limit of 10 s, we observe that
KS finds the best solution in 108 out of 160 instances while CG in 98
nstances. Moreover, the peak of CG remains equal to 60% while the
one of KS decreases to ∼46.5%. Finally, only 8 times the percentage f
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gap of KS exceeds the one of CG. Despite a time limit of 20 s only, the
esults of KO are much better than the other two algorithms. Indeed, it
inds the best solution in 140 out of 160 instances, its peak is equal to
∼42.4% and its percentage gap never exceeds the one of KS. Notice that
the percentage gap peaks can change among the subfigures because as
the time limit increases the algorithms become more effective and then
the best solutions, found for each instance, can change.

The results obtained by CG and KS with a time limit of 35 s
Fig. 7(c)) are very similar to the ones obtained within 20 s. There

is only to report a reduction of the number of best solutions found
by CG from 98 to 95 and a lightly better peak of KS that decreases
to ∼42.3%. The quality of the solutions provided by KO within 35 s
significantly improves. Indeed, this algorithm returns the best solution
for 147 instances and its peak is decreased to 8.33% which represents
a relevant improvement with respect to the 42.4% observed with the
time limit of 20 s. The results of the three algorithms are essentially
confirmed by increasing the time limit to 50 s (Fig. 7(d)). There are
some further improvements of KO which returns the best solution
or 151 instances and its peak decreases to 5.68% showing that this
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Fig. 7. Comparison of the solution quality of CG, KS, and KO: time limit fixed to 5, 20, 35, and 50 s, respectively.
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algorithm remains very effective even in the nine instances where it
oes not find the best solution. With respect to the previous time limit
f 35 s, the peaks of CG and KS do not change while the best solutions
ound are decreased to 91 and 106, respectively.

4.3. Computational results and comparison with the state-of-the-art ap-
proach

In this section, we compare the results and performance of CG, KS,
and KO against the ones of the best-performing approach proposed
in Şuvak et al. (2020), i.e., a Benders Decomposition (BD) algorithm
based on Formulation 2. Since the computational results of the BD
algorithm, reported in Şuvak et al. (2020), refer to tests carried out by
sing a Intel Xeon CPU E5-2687 W 3.10 GHz processor with 3.74
igaflops, while we conducted the numerical experiments related to
ll the methods presented in this work using a Intel(R) Core(TM)
7-3770 CPU @ 3.40 GHz processor with 4.74 gigaflops, in order to
ave a fair comparative study, the CPU time reported in Şuvak et al.

(2020) has been scaled according to the Whetstone benchmark.1 In
particular, we scaled all the running times of BD by dividing them
for the conversion ratio 𝜇 = 4.74

3.74 ≈ 1.27. Clearly, by applying this
conversion, the one-hour time limit, imposed by Şuvak et al. (2020)
orresponds to 2840.51 s in our setting.

Computational results are shown in , reporting information about
he tests performed on the Small and Large instances, respectively. The
irst three columns of report the instance ID, the instance name, and
he value of the best-known feasible solution (Best) in the literature,

1 http://gene.disi.unitn.it/test/cpu_list.php.
 l
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respectively. In particular, for each instance, the Best column reports
the highest among the solution values obtained by all the approaches
resented in Şuvak et al. (2020). When the reported value is marked

with an asterisk, the associated solution has been certified to be op-
timal. Then, for each of the four compared approaches, namely BD,
CG, KS and KO, three additional columns are reported, indicating:
the value associated with the solution identified by that approach
(Value), the execution time in seconds (Time), and the percentage gap
measuring how far, in terms of value, the identified solution is from the
est-known one in the literature (Gap). Negative gap values indicate
mprovements with respect to the best solution values available in the
iterature and are marked in bold. On Small instances, the average
ercentage gap of the solutions identified by the CG, with respect to
he best-known solutions, is 4.77%, the KS approach achieves a gap
f 3.47%, while the KO approach achieves an average gap of 0.33%.
n Large instances, the average percentage gap achieved by CG, KS,
nd KO are 4.66%, 5.97%, and −1.18%, respectively. The obtained
esults show the increase in the solution quality resulting from the
ombination of CG and KS. On the other side, the state-of-the-art BD

method reports an average percentage gap, with respect to the best-
nown solution, of 0.64% on the Small Instances and 4.47% on Large
nstances. The average percentage gap values produced by the KO
pproach are lower than the ones yielded by BD on both the classes
f instances, even though such a difference is more evident on Large
nstances. Furthermore, concerning the computational times, the KO
equires, on average, 54.22 s to solve a small instance and 198.60 to
olve a large one. Thus, the proposed approach is faster than the state-
f-the-art method, which requires, on average, 388.32 and 1660.93 s
o solve a small and a large instance, respectively. Nevertheless, the
O approach improves the best-known solution value available in the
iterature for 2 small and 13 large instances, while it identifies a

http://gene.disi.unitn.it/test/cpu_list.php
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Table 3
Computational results on small instances.

ID Best BD CG KS KO

Value Time Gap Value Time Gap Value Time Gap Value Time Gap

1 37* 37 12.89 0.00% 37 7.99 0.00% 37 4.64 0.00% 37 13.09 0.00%
2 49* 49 4.03 0.00% 37 5.72 24.49% 49 3.73 0.00% 49 9.39 0.00%
3 24* 24 8.67 0.00% 24 1.88 0.00% 24 6.31 0.00% 24 7.58 0.00%
4 33* 33 4.97 0.00% 33 4.57 0.00% 33 4.65 0.00% 33 9.56 0.00%
5 12* 12 6.77 0.00% 12 1.49 0.00% 12 12.09 0.00% 12 7.44 0.00%
6 34* 34 6.01 0.00% 34 2.51 0.00% 34 4.92 0.00% 34 8.40 0.00%
7 13* 13 14.96 0.00% 13 1.98 0.00% 13 6.67 0.00% 13 8.35 0.00%
8 15* 15 20.96 0.00% 15 1.73 0.00% 15 5.53 0.00% 15 7.65 0.00%
9 35* 35 14.98 0.00% 34 6.63 2.86% 34 6.84 2.86% 35 12.70 0.00%

10 51* 51 178.84 0.00% 51 3.01 0.00% 51 19.57 0.00% 51 16.98 0.00%
11 26* 26 20.46 0.00% 26 4.55 0.00% 26 10.55 0.00% 26 14.29 0.00%
12 50* 50 17.65 0.00% 39 4.77 22.00% 50 14.83 0.00% 50 14.40 0.00%
13 13* 13 30.50 0.00% 13 2.54 0.00% 13 12.62 0.00% 13 12.91 0.00%
14 19* 19 22.28 0.00% 19 2.25 0.00% 19 9.97 0.00% 19 11.68 0.00%
15 25* 25 26.00 0.00% 25 4.32 0.00% 25 9.74 0.00% 25 14.48 0.00%
16 19* 19 29.38 0.00% 19 2.19 0.00% 19 11.32 0.00% 19 13.53 0.00%
17 43* 43 143.72 0.00% 34 13.53 20.93% 35 37.51 18.60% 38 55.73 11.63%
18 55* 55 25.49 0.00% 55 10.49 0.00% 55 8.21 0.00% 55 19.85 0.00%
19 33* 33 29.14 0.00% 33 9.72 0.00% 32 13.23 3.03% 33 23.38 0.00%
20 35* 35 40.50 0.00% 33 14.01 5.71% 33 11.26 5.71% 33 26.57 5.71%
21 27* 27 54.10 0.00% 26 6.40 3.70% 27 15.82 0.00% 27 21.73 0.00%
22 34* 34 37.69 0.00% 32 6.17 5.88% 34 14.51 0.00% 34 19.91 0.00%
23 15* 15 25.41 0.00% 13 4.03 13.33% 14 13.99 6.67% 15 17.32 0.00%
24 34* 34 26.44 0.00% 34 4.61 0.00% 34 13.80 0.00% 34 17.01 0.00%
25 45* 45 518.28 0.00% 41 15.31 8.89% 45 14.58 0.00% 45 33.95 0.00%
26 80* 80 78.77 0.00% 69 16.91 13.75% 71 26.03 11.25% 80 38.00 0.00%
27 30* 30 130.41 0.00% 25 4.74 16.67% 24 37.98 20.00% 25 42.98 16.67%
28 48* 48 130.58 0.00% 33 16.76 31.25% 48 17.57 0.00% 48 35.06 0.00%
29 26* 26 56.46 0.00% 24 7.56 7.69% 26 17.69 0.00% 26 25.29 0.00%
30 36* 36 64.61 0.00% 35 5.50 2.78% 36 20.47 0.00% 36 26.94 0.00%
31 24* 24 19.43 0.00% 24 3.51 0.00% 24 22.55 0.00% 24 27.80 0.00%
32 37* 37 7.29 0.00% 37 7.03 0.00% 37 19.19 0.00% 37 26.22 0.00%

33 37* 37 17.86 0.00% 37 10.88 0.00% 35 10.08 5.41% 37 20.46 0.00%
34 48* 48 34.49 0.00% 48 10.09 0.00% 47 10.73 2.08% 48 21.90 0.00%
35 24* 24 31.94 0.00% 20 2.61 16.67% 22 10.03 8.33% 22 13.01 8.33%
36 33* 33 46.59 0.00% 18 3.06 45.45% 33 11.06 0.00% 33 15.86 0.00%
37 21* 21 32.94 0.00% 21 4.30 0.00% 21 11.14 0.00% 21 16.51 0.00%
38 33* 33 31.26 0.00% 30 5.57 9.09% 33 12.80 0.00% 33 19.23 0.00%
39 13* 13 20.27 0.00% 13 3.01 0.00% 13 11.97 0.00% 13 14.66 0.00%
40 37* 37 10.40 0.00% 37 4.29 0.00% 37 10.49 0.00% 37 15.30 0.00%
41 37* 37 616.52 0.00% 36 9.63 2.70% 28 30.96 24.32% 36 31.54 2.70%
42 53* 53 124.67 0.00% 53 10.61 0.00% 50 20.46 5.66% 53 25.60 0.00%
43 35* 35 200.12 0.00% 34 8.47 2.86% 25 23.58 28.57% 35 33.97 0.00%
44 38* 38 58.04 0.00% 37 5.01 2.63% 37 18.72 2.63% 38 24.92 0.00%
45 21* 21 78.21 0.00% 12 5.18 42.86% 14 26.22 33.33% 21 32.61 0.00%
46 18* 18 47.58 0.00% 18 6.31 0.00% 17 16.60 5.56% 18 25.42 0.00%
47 24* 24 15.91 0.00% 24 11.06 0.00% 24 22.86 0.00% 24 32.10 0.00%
48 37* 37 26.18 0.00% 37 10.13 0.00% 37 25.10 0.00% 37 36.78 0.00%
49 40* 40 381.28 0.00% 40 21.47 0.00% 39 35.33 2.50% 40 83.74 0.00%
50 57* 57 138.01 0.00% 55 16.15 3.51% 55 35.86 3.51% 55 49.09 3.51%
51 40* 40 177.09 0.00% 38 13.59 5.00% 40 29.53 0.00% 40 41.50 0.00%
52 53* 53 145.24 0.00% 53 6.53 0.00% 53 27.91 0.00% 53 37.14 0.00%
53 25* 25 70.21 0.00% 25 17.80 0.00% 25 29.64 0.00% 25 46.92 0.00%
54 38* 38 66.33 0.00% 38 4.81 0.00% 38 28.44 0.00% 38 33.16 0.00%
55 25* 25 41.72 0.00% 11 5.04 56.00% 25 31.12 0.00% 25 34.45 0.00%
56 18* 18 18.84 0.00% 18 5.25 0.00% 18 28.07 0.00% 18 34.61 0.00%
57 49 45 2840.51 8.16% 48 34.11 2.04% 48 71.16 2.04% 49 192.28 0.00%
58 73* 73 2147.34 0.00% 73 23.63 0.00% 73 89.62 0.00% 73 153.32 0.00%
59 38* 38 318.29 0.00% 34 13.77 10.53% 37 40.27 2.63% 38 67.54 0.00%
60 51* 51 734.78 0.00% 51 22.81 0.00% 49 56.14 3.92% 51 96.11 0.00%
61 39* 39 133.29 0.00% 38 13.38 2.56% 38 39.59 2.56% 38 53.49 2.56%
62 37* 37 198.06 0.00% 37 17.98 0.00% 37 41.90 0.00% 37 61.29 0.00%
63 26* 26 72.82 0.00% 26 14.98 0.00% 23 49.41 11.54% 26 75.00 0.00%
64 33* 33 62.96 0.00% 33 12.82 0.00% 33 53.83 0.00% 33 66.10 0.00%

65 36* 36 919.26 0.00% 34 11.47 5.56% 26 19.76 27.78% 36 32.72 0.00%
66 53* 53 451.98 0.00% 50 11.65 5.66% 50 16.03 5.66% 53 29.69 0.00%
67 22* 22 60.62 0.00% 21 5.03 4.55% 22 16.68 0.00% 22 24.08 0.00%
68 34* 34 24.20 0.00% 33 16.97 2.94% 32 14.29 5.88% 34 33.39 0.00%
69 27* 27 18.02 0.00% 27 11.84 0.00% 27 25.45 0.00% 27 38.82 0.00%
70 33* 33 33.98 0.00% 33 6.31 0.00% 33 21.05 0.00% 33 32.04 0.00%
71 12* 12 21.56 0.00% 12 5.13 0.00% 12 23.77 0.00% 12 32.00 0.00%

(continued on next page)
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Table 3 (continued).
72 19* 19 23.19 0.00% 17 10.80 10.53% 18 26.32 5.26% 18 41.86 5.26%
73 39 39 2840.51 0.00% 39 22.51 0.00% 35 56.62 10.26% 39 108.13 0.00%
74 64* 64 774.87 0.00% 64 20.40 0.00% 54 40.06 15.63% 64 56.51 0.00%
75 26* 26 122.32 0.00% 26 24.82 0.00% 26 27.17 0.00% 26 55.92 0.00%
76 38* 38 651.71 0.00% 37 11.88 2.63% 37 39.55 2.63% 37 52.99 2.63%
77 29* 29 94.07 0.00% 29 24.20 0.00% 28 45.88 3.45% 29 76.97 0.00%
78 37* 37 63.34 0.00% 37 18.99 0.00% 37 42.61 0.00% 37 61.93 0.00%
79 14* 14 57.10 0.00% 12 7.85 14.29% 14 42.66 0.00% 14 61.74 0.00%
80 37* 37 39.12 0.00% 34 7.14 8.11% 37 36.61 0.00% 37 51.24 0.00%
81 53 40 2840.51 24.53% 53 51.01 0.00% 41 113.62 22.64% 53 214.70 0.00%
82 68 52 2840.51 23.53% 64 29.16 5.88% 67 76.26 1.47% 68 171.98 0.00%
83 40* 40 1429.18 0.00% 40 15.01 0.00% 36 89.42 10.00% 40 118.88 0.00%
84 39* 39 595.57 0.00% 39 16.25 0.00% 39 64.92 0.00% 39 75.20 0.00%
85 26* 26 534.17 0.00% 26 21.25 0.00% 26 78.57 0.00% 26 85.30 0.00%
86 37* 37 213.58 0.00% 35 14.57 5.41% 37 60.25 0.00% 36 71.67 2.70%
87 25* 25 75.77 0.00% 25 18.75 0.00% 25 77.08 0.00% 25 86.69 0.00%
88 19* 19 140.48 0.00% 18 9.53 5.26% 19 59.84 0.00% 19 66.11 0.00%
89 53 53 2840.51 0.00% 54 38.60 −1.89% 50 179.79 5.66% 55 317.89 −3.77%
90 54 51 2840.51 5.56% 54 38.84 0.00% 52 224.51 3.70% 68 319.71 −25.93%
91 41* 41 2088.25 0.00% 41 56.48 0.00% 41 98.24 0.00% 41 170.25 0.00%
92 53* 53 2270.18 0.00% 53 32.39 0.00% 53 96.15 0.00% 53 142.38 0.00%
93 27* 27 777.61 0.00% 26 11.64 3.70% 27 81.54 0.00% 27 103.82 0.00%
94 53* 53 439.42 0.00% 53 39.29 0.00% 53 81.48 0.00% 53 122.69 0.00%
95 24* 24 191.54 0.00% 24 23.32 0.00% 24 83.42 0.00% 24 107.16 0.00%
96 33* 33 217.88 0.00% 32 11.99 3.03% 33 84.85 0.00% 33 95.38 0.00%

AVG 388.32 0.64% 12.54 4.77% 35.97 3.47% 54.22 0.33%

#Impr. 1 0 2

#NBest 54 60 86
Fig. 8. Percentage of best/optimal solutions found by algorithms within the computational time reported on the 𝑥-axis.
solution whose value corresponds to the new best-known value, i.e., the
one considering also the results computed in this work, for 86 out of
96 small instances and 49 out of 64 large ones.

Fig. 8 depicts a cumulative chart with time, expressed in seconds,
on the 𝑥-axis and the percentage of best/optimal solutions, identified
within a given time, on the 𝑦-axis. Notice that the best/optimal so-
utions considered in this chart are those having the highest values,
15 
identified by comparing all the approaches presented in Şuvak et al.
(2020) and all the ones presented in this work. The curves show that,
in general, the KO approach is able to identify a larger number of best
solutions in less time, compared with the other approaches. More in
detail, in the first 80 s, the CG algorithm identifies more best/optimal
solutions than the remaining approaches but is not able to identify
further ones after about 115 s, identifying at the end 76 out of 160
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Table 4
Computational results on large instances.

ID Best BD CG KS KO

Value Time Gap Value Time Gap Value Time Gap Value Time Gap

97 39* 39 991.9 0.00% 36 32.07 7.69% 39 37.69 0.00% 39 96.56 0.00%
98 47* 35 2840.51 25.53% 35 15.10 25.53% 34 35.79 27.66% 47 82.05 0.00%
99 23* 23 139.57 0.00% 22 20.03 4.35% 20 29.70 13.04% 22 52.05 4.35%

100 36* 36 88.02 0.00% 36 14.16 0.00% 36 31.49 0.00% 36 45.81 0.00%
101 25* 25 84.43 0.00% 12 6.86 52.00% 25 35.06 0.00% 25 42.23 0.00%
102 19* 19 89.68 0.00% 16 6.32 15.79% 19 42.41 0.00% 19 49.85 0.00%
103 14* 14 46.59 0.00% 13 5.59 7.14% 14 41.26 0.00% 14 53.33 0.00%
104 20* 20 48.86 0.00% 20 6.11 0.00% 20 37.94 0.00% 20 44.53 0.00%
105 48 45 2840.51 6.25% 48 50.22 0.00% 45 107.13 6.25% 56 275.08 −16.67%
106 65* 52 2840.51 20.00% 50 20.53 23.08% 36 43.96 44.62% 53 103.91 18.46%
107 31* 31 887.9 0.00% 31 20.12 0.00% 31 80.90 0.00% 31 82.76 0.00%
108 36* 36 1569.11 0.00% 36 27.25 0.00% 35 51.11 2.78% 36 84.13 0.00%
109 26* 26 388.1 0.00% 24 22.57 7.69% 26 70.50 0.00% 26 110.79 0.00%
110 33* 33 461.74 0.00% 32 18.33 3.03% 32 71.11 3.03% 32 98.09 3.03%
111 25* 25 168.39 0.00% 25 15.13 0.00% 25 73.64 0.00% 25 90.32 0.00%
112 18* 18 116.5 0.00% 16 8.15 11.11% 18 67.82 0.00% 18 78.83 0.00%
113 39 34 2840.51 12.82% 40 49.63 −2.56% 41 190.97 −5.13% 41 500.48 −5.13%
114 50 48 2840.51 4.00% 52 44.96 −4.00% 49 124.06 2.00% 52 307.15 −4.00%
115 35* 35 2226.85 0.00% 28 16.87 20.00% 35 79.48 0.00% 35 109.29 0.00%
116 55 55 2840.51 0.00% 54 44.49 1.82% 54 100.17 1.82% 55 252.09 0.00%
117 25* 25 1979.85 0.00% 21 21.47 16.00% 24 103.93 4.00% 24 144.46 4.00%
118 50* 50 550.95 0.00% 50 11.13 0.00% 50 99.93 0.00% 50 117.00 0.00%
119 24* 24 331.96 0.00% 22 12.62 8.33% 24 101.54 0.00% 24 123.49 0.00%
120 19* 19 641.12 0.00% 18 10.28 5.26% 19 107.49 0.00% 19 129.60 0.00%
121 50 41 2840.51 18.00% 54 48.12 −8.00% 41 113.82 18.00% 54 360.24 −8.00%
122 72 55 2840.51 23.61% 86 77.92 −19.44% 72 131.45 0.00% 86 412.12 −19.44%
123 35 34 2840.51 2.86% 34 36.35 2.86% 37 115.49 −5.71% 37 189.33 −5.71%
124 54 52 2840.51 3.70% 52 39.03 3.70% 52 110.04 3.70% 52 184.84 3.70%
125 32* 32 1880.64 0.00% 32 14.21 0.00% 32 138.87 0.00% 32 170.44 0.00%
126 53* 53 2597.75 0.00% 51 43.80 3.77% 46 131.53 13.21% 51 176.84 3.77%
127 25* 25 461.39 0.00% 25 15.00 0.00% 25 151.39 0.00% 25 183.79 0.00%
128 36* 36 523.14 0.00% 34 45.97 5.56% 36 151.84 0.00% 36 203.22 0.00%

129 38 31 2840.51 18.42% 33 55.26 13.16% 33 107.56 13.16% 33 183.82 13.16%
130 69* 69 2249.74 0.00% 69 19.75 0.00% 54 56.36 21.74% 69 95.32 0.00%
131 23* 23 1566.41 0.00% 22 9.70 4.35% 22 49.51 4.35% 22 60.30 4.35%
132 37* 37 589.97 0.00% 34 23.32 8.11% 33 65.05 10.81% 34 85.46 8.11%
133 15* 15 265.75 0.00% 12 7.83 20.00% 15 63.03 0.00% 15 76.84 0.00%
134 50* 50 155 0.00% 50 25.89 0.00% 36 66.61 28.00% 50 101.64 0.00%
135 15* 15 98.34 0.00% 12 19.95 20.00% 15 62.44 0.00% 15 90.40 0.00%
136 34* 34 124.6 0.00% 32 15.88 5.88% 34 67.85 0.00% 34 91.36 0.00%
137 54 54 2840.51 0.00% 54 37.55 0.00% 54 127.91 0.00% 54 157.36 0.00%
138 52 49 2840.51 5.77% 65 38.01 −25.00% 53 115.20 −1.92% 65 223.33 −25.00%
139 36* 29 2840.51 19.44% 27 24.81 25.00% 29 123.46 19.44% 29 141.90 19.44%
140 50 50 2840.51 0.00% 45 38.92 10.00% 36 90.82 28.00% 50 148.17 0.00%
141 28* 28 783.28 0.00% 23 24.98 17.86% 26 99.21 7.14% 26 133.55 7.14%
142 50* 50 1165.51 0.00% 50 48.24 0.00% 50 108.47 0.00% 50 179.60 0.00%
143 26* 26 289.23 0.00% 25 27.22 3.85% 15 119.11 42.31% 26 158.24 0.00%
144 34* 34 419 0.00% 32 25.73 5.88% 34 113.30 0.00% 34 146.74 0.00%
145 48 40 2840.51 16.67% 50 71.19 −4.17% 49 248.71 −2.08% 56 442.11 −16.67%
146 51 48 2840.51 5.88% 64 73.11 −25.49% 52 194.31 −1.96% 64 447.31 −25.49%
147 39 38 2840.51 2.56% 38 67.22 2.56% 28 131.12 28.21% 38 234.84 2.56%
148 55 38 2840.51 30.91% 51 63.24 7.27% 38 137.75 30.91% 51 238.90 7.27%
149 25* 25 2840.51 0.00% 24 58.21 4.00% 25 153.08 0.00% 25 232.39 0.00%
150 35* 35 2683.31 0.00% 35 48.90 0.00% 35 148.92 0.00% 35 229.05 0.00%
151 23* 23 1125.09 0.00% 23 29.25 0.00% 14 180.39 39.13% 23 221.67 0.00%
152 33* 33 1175.32 0.00% 19 19.45 42.42% 33 177.44 0.00% 33 211.60 0.00%
153 41 41 2840.51 0.00% 61 112.36 −48.78% 47 401.11 −14.63% 61 539.29 −48.78%
154 81 68 2840.51 16.05% 85 155.51 −4.94% 88 314.64 −8.64% 85 656.44 −4.94%
155 37 33 2840.51 10.81% 37 78.72 0.00% 38 220.60 −2.70% 38 375.76 −2.70%
156 46 37 2840.51 19.57% 46 100.28 0.00% 53 232.28 −15.22% 53 447.04 −15.22%
157 38 38 2840.51 0.00% 38 57.12 0.00% 38 231.67 0.00% 38 315.09 0.00%
158 48 37 2840.51 22.92% 37 54.38 22.92% 37 228.36 22.92% 37 310.82 22.92%
159 26* 26 1972.66 0.00% 26 94.89 0.00% 25 270.39 3.85% 26 387.05 0.00%
160 36* 36 1508.82 0.00% 35 107.25 2.78% 36 264.82 0.00% 36 392.36 0.00%

AVG 1660.93 4.47% 38.35 4.66% 121.58 5.97% 198.60 −1.18%

#Impr. 9 9 13

#NBest 22 33 49
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Fig. 9. Box plots of the percentage gaps of each algorithm with respect to the best-known solutions available in the literature.
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best/optimal solutions. The pure KS finds, instead, approximately in
the first 315 s, 93 out of 160 best/optimal solutions, after which it
oes not find others. On the other hand, the KO approach identifies
r improves 135 best/optimal solutions, in about 540 s, while the BD
pproach solves 134 out of 160 instances to optimality, in about 2800 s.

4.4. Statistical and sensitivity analysis of the results

To further investigate the differences in performance of the four
solution approaches, let us observe the box plots reported in Fig. 9,
showing the distribution of the percentage gaps obtained by each

ethod on both small and large instances.
The box plots associated with BD and KO are alike in that both their

upper and lower whiskers lie on the 0% gap value, indicating low data
variation, as for most of the instances (specifically the 85%), both BD
and KO identify the best-known solutions available in the literature.
The performances of CG and KS, on the other side, are characterized
by a higher variation, with the former yielding a gap between 0% and
5.88%, and the latter leading to a gap between 0% and 5.03%, for about
70% of the instances. Although all the box plots have outliers, the ones
detected by the KO box plot are mostly equally distributed between
the positive and negative sides of the 𝑦-axis, while very few negative
outliers have been identified for CG and KS. This reflects the fact that
KO improves the value of the best-known solution in more cases w.r.t.
the other approaches.

The performance of the KO approach has been further analyzed, in
erms of efficiency and effectiveness, as a function of the size and char-
cteristics of the instances. As it can be noticed by observing Fig. 10(a),

the algorithm requires longer computational times as the number of
odes 𝑛, as well as the value of the arc density parameter 𝑝, increase.

Fig. 10(b) shows, instead, the impact of the conflict density parameter 𝑑
and the arc density parameter 𝑝, indicating that the higher the number
of conflicts, the faster the resolution. Concerning the quality of the
solutions, Figs. 11(a), 11(b) and 11(c) show the percentage gap trends
etected at the variation of the number of nodes 𝑛, arc density value

𝑝 and conflict density value 𝑑, respectively. As expected, the quality of
the solution is higher, i.e., the average gap values are generally smaller
17 
and they often become negative, as the number of nodes and the arc
ensity value increase. On the contrary, the trend is the opposite for
he conflict density, with respect to which negative average gap values
re observed for 𝑑 ≤ 40%, while higher conflict density values are
ssociated with average gap values between 0% and 1%.

4.5. Instance space analysis

We used the Melbourne Algorithm Test Instance Library with Data
nalytics (MATILDA) (Smith-Miles et al., 2020) tools to conduct a

performance analysis and jointly evaluate the efficiency and effective-
ness of the proposed approaches in the instance space of the MFPC.
nstance Space Analysis (Smith-Miles & Muñoz, 2023) is a method-

ology that represents test instances as feature vectors, visualizes the
whole instance space, and studies how the instance properties affect
he performance of given algorithms. In recent years, such analysis
as been successfully performed to evaluate search-based software
esting techniques (Neelofar et al., 2022), as well as solution ap-

proaches for combinatorial problems such as the curriculum-based
ourse timetabling (De Coster et al., 2022), the sports timetabling (Van

Bulck et al., 2024), the two-dimensional bin-packing (Liu et al., 2024),
he multi-demand multidimensional knapsack (Scherer et al., 2024),
nd the maximum flow (Alipour et al., 2023) problems, whose findings

represent a starting point for our study on the MFPC.

Performance measure. To evaluate the performance of the tested ap-
proaches, a problem-specific performance measure must be provided
to MATILDA. For the MFPC, such a measure must consider both the
solution quality and the computational efficiency of the tested method.
ollowing the idea proposed in De Coster et al. (2022), we devised the
ollowing performance measure:

𝛷(𝑔 , 𝑟) = 1.01−
(

𝜈⋅𝑔+𝜂⋅ 𝑟
𝑡max

)

, (5)

where 𝑔 represents the percentage gap from the best-known solution
alue (obtained considering all the approaches proposed in Şuvak et al.

(2020) and in this paper), 𝑟 is the runtime of the considered algorithm
in seconds, 𝑡 is the largest runtime reported among all the tested
max
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Fig. 10. Computational times charts, showing the impact of the characteristics of the instances on the efficiency of the KO algorithm. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. Percentage gap charts, showing the impact of the characteristics of the instances on the effectiveness of the KO algorithm.
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approaches, whereas 𝜈 and 𝜂 are parameters used to balance the impact
f the performance gap 𝑔 and the runtime 𝑟. In our analysis, we decided

to prioritize the performance gap 𝑔 and to use the runtime 𝑟 only as
 secondary criterion. To this end, we set 𝜈 = 100 and 𝜂 = 10. The
ase 1.01 for the exponential function has been chosen such that the
core is scaled down by 1% whenever the exponent increases by 1 unit.
s a result, a higher value of the 𝛷 function reflects an overall better
erformance of the considered algorithm on the tested instance. In our
nalysis, the 𝛷 function has been used as performance measure with a
oodness threshold of 0.05, meaning that an algorithm is considered
‘good’’ if its 𝛷 value is within 5% from the one achieved by the
est-performing algorithm on a given instance.
 s

18 
Features. Table 5 describes the collection of 18 features that we used to
characterize the instance space of the MFPC. Some of them are drawn
from the literature, as they were used in Alipour et al. (2023) for the
lassic maximum flow problem, while others are introduced to capture
dditional properties of the instance related to conflicts. The selected
eatures incorporate information about arc and conflict density, the
ariability of node degrees, and the arc capacities. In the reported
ormula, given a sequence of values 𝑋, we denote by 𝜇(𝑋) and 𝜎(𝑋)
ts associated mean and standard deviation, respectively. We further
enote by 𝑈 = ⟨𝑢𝑖𝑗 ∶ (𝑖, 𝑗) ∈ 𝐴⟩ an arbitrary sequence of the capacities
ssociated with the arcs of 𝐺, by 𝐷 = ⟨|𝑁(𝑖)| ∶ 𝑖 ∈ 𝑉 ⟩ an analogous
equence of the node degrees, and by 𝐶 = ⟨|𝛿(𝑖, 𝑗)| ∶ (𝑖, 𝑗) ∈ 𝐴⟩ a
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Table 5
Features used to characterize the instance space of the MFPC.

Name Description Notation

MaxFlow Maximum flow that can be sent from 𝑠 to 𝑡 by neglecting the conflict constraints
ArcDensity Number of existing over maximum possible number of arcs |𝐴|

|𝑉 |×(|𝑉 |−1)

ConfDensity Number of existing over maximum possible number of conflicts
∑

(𝑖,𝑗)∈𝐴 |𝛿(𝑖,𝑗)|
|𝐴|×(|𝐴|−1)

Nodes Number of nodes |𝑉 |

AvNdDg Average degree of a node |𝐴|
|𝑉 |

AvArcCap Average capacity of an arc 𝜇(𝑈 )
AvNdCap Average node capacity

∑

(𝑖,𝑗)∈𝐴 𝑢𝑖𝑗
|𝑉 |

AvgArcConf Average number of conflicts per arc 𝜇(𝐶)

ScAvCap Scaled average arc capacity AvArcCap
median(𝑈 )

ScAvNdCap Scaled average node capacity AvNdCap
median(𝑈 )

ScCapDens Scaled capacitated arc density ScAvCap × ArcDensity
ScRngCap Scaled range of arc capacities max(𝑈 )−min(𝑈 )

AvArcCap

cvNdDg Coefficient of variation associated with the node degrees 𝜎(𝐷)
𝜇(𝐷)

cvCap Coefficient of variation associated with the arc capacities 𝜎(𝑈 )
𝜇(𝑈 )

cvArcConf Coefficient of variation associated with the number of conflict per arc 𝜎(𝐶)
𝜇(𝐶)

PercLoCap Percentage of arc capacities smaller than or equal to the average arc capacity |{(𝑖,𝑗)∈𝐴∶𝑢𝑖𝑗≤𝜇(𝑈 )}|
|𝐴|

PercHiCap Percentage of arc capacities greater than the average arc capacity |{(𝑖,𝑗)∈𝐴∶𝑢𝑖𝑗>𝜇(𝑈 )}|
|𝐴|

PercLoArcConf Percentage of arcs with less than the average number of conflicts per arc |{(𝑖,𝑗)∈𝐴∶|𝛿(𝑖,𝑗)|≤𝜇(𝐶)}|
|𝐴|

PercHiArcConf Percentage of arc conflicts with at least than the average number of conflicts per arc |{(𝑖,𝑗)∈𝐴∶|𝛿(𝑖,𝑗)|>𝜇(𝐶)}|
|𝐴|
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sequence containing the number of conflicts involving each arc of 𝐺.

Results. The feature selection process produced a set of 10 features,
corresponding to the most correlated ones with the algorithms’ per-
formance. The derived optimal linear transformation of these features
into the 2D instance space is given by the following projection equation
computed by MATILDA.

[
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The performance of the trained Support Vector Machines (SVM)
models in the resulting instance space is summarized in Table 6: the
first column reports the tested algorithms; the second column indicates
the probability of each algorithm being labeled as ‘‘good’’ for a spe-
cific instance; while the last three columns represent quality measures
(i.e., accuracy, precision and recall) of the SVM models trained for each
algorithm.

The BD approach is predicted to have a ‘‘good’’ rate of 0.738, with
n accuracy of 88.8%, a precision of 92.4%, and a recall of 92.4%. This

means the prediction is precise, with a slightly lower recall than the
others. CG algorithm instead, has a predicted ‘‘good’’ rate of 0.694, with
an accuracy of 69.4%, a precision of 69.4%, and a recall of 100%. While
having moderate accuracy and precision values, the high recall value
testifies that the SVM model successfully recognizes all the instances
for which CG behaves well. The KS approach is predicted to have a
‘‘good’’ rate of 0.731, with an accuracy of 75.0%, a precision of 76.2%,
and a recall of 95.7%. Finally, with an accuracy of 96.3%, a precision
of 96.3%, and a recall of 100%, the KO algorithm is reliably predicted
to be the best performing one, having a ‘‘good’’ rate of 0.963.
 s
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Table 6
Statistical results of SVM models.

Algorithm Pr (Good) Accuracy Precision Recall

BDw 0.738 88.8% 92.4% 92.4%
CG 0.694 69.4% 69.4% 100%
KS 0.731 75.0% 76.2% 95.7%
KO 0.963 96.3% 96.3% 100%

Fig. 12 shows the distribution of the following four selected fea-
ures, allowing us to observe interesting performance trends of the
ested algorithms: Nodes, AvNdDg, PercHiCap, and AvgArcConf. Each
oint represents an instance, while its color reflects the value of the
onsidered feature for the related instances, normalized to the feature’s
alue range. In particular, minimal values of each feature are shown as
lue, while maximal values are shown as yellow. As an example, in

Fig. 12(b), the instances with the largest AvNdDg values are located on
he first and fourth quadrants (corresponding to 𝑧1 ≥ 0), while the ones

with the smallest values on the remaining quadrants (corresponding to
𝑧1 ≤ 0). Fig. 13 shows the performance (‘‘good’’ or ‘‘bad’’) of each ana-
lyzed algorithm on each point of the instance space. Considering both
Figs. 12 and 13, the BD approach generally exhibits bad performance on
instances with numerous nodes, as well as in the presence of many arcs
having a capacity greater than the average one, and for instances with
high average number of conflicts per arc, corresponding to the points
n the upper area of the 2D instance space. Although identifying a bad-
erformance area for both KS and CG approaches is more challenging,
he most difficult instances seem to be mainly located in the central
egion of the instance space, corresponding to a high average number

of conflicts per arc. Finally, the KO approach generally performs well,
exhibiting poor performance in the fewest possible instances.

5. Conclusions

In this paper, we introduced three heuristic approaches to solve
the Maximum Flow Problem with Conflicts. The first one is a greedy
lgorithm enhanced according to the Carousel Greedy strategy and the
econd one is a Kernel Search algorithm. The third algorithm, named
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Fig. 12. Distribution of the Nodes (a), AvNdDg (b), PercHiCap (c), and AvgArcConf (d) features’ values in the 2D instance space resulting from (6). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
Kernousel, is obtained by merging the Carousel Greedy and the Kernel
Search approaches. The idea behind Kernousel is to combine the opti-
mality guarantee provided by the Kernel Search for restricted problems
with the knowledge gained by the Carousel Greedy algorithm during its
exploration of the solution space to obtain a sorting and partitioning
of the variables, into the kernel set and the buckets, that makes the
Kernel Search more effective. Moreover, the use of Carousel Greedy, as
an alternative approach to the classical linear relaxation solution of the
problem, makes Kernousel suitable for optimization problems where
the information retrieved from the solution of the linear relaxation does
not produce good predictors on the most promising variables.

The proposed methods have been tested on benchmark instances
and compared with the best-known solutions from the literature. The
computational results show that Kernousel is much more effective than
the singular approaches applied separately and this occurs also by
providing the same time limit to the three algorithms. Finally, the
comparison with the best solutions available in the literature shows that
the average gap of Kernousel is lower than 1% and there are several
instances where it returns a new best-known solution value.
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Fig. 13. Binary performance of the BD (a), CG (b), KS (c) and KO (d) approaches on each point of the 2D instance space resulting from (6).
Table A.7
Mathematical symbols and notations.
Notation Definition

𝐺 = (𝑉 , 𝐴) Capacitated and directed flow network
𝑢𝑖𝑗 Maximum amount of flow that can be sent from node 𝑖 to node 𝑗
𝛿(𝑖, 𝑗) Set of arcs in conflict with (𝑖, 𝑗) ∈ 𝐴
𝐷max Maximum number of conflicts involving an arc of 𝐺
𝐶max Maximum capacity associated with an arc of 𝐺
 Non negative variable representing the amount of flow sent through the network
𝑓𝑖𝑗 Continuous variable indicating the flow carried out be the arc (𝑖, 𝑗) ∈ 𝐴
𝑥𝑖𝑗 Integer variable indicating whether the arc (𝑖, 𝑗) ∈ 𝐴 carries some flow
𝑓 Given flow, i.e., realization of the 𝑓 variables
𝐺𝑓 Residual graph associated with flow 𝑓
𝑟(𝑓 )𝑖𝑗 Residual capacity associated with arc (𝑖, 𝑗) in 𝐺𝑓
𝑆 Solution composed of a sequence of augmenting paths
𝛥 Vector of augmenting capacities associated with the paths in 𝑆
𝑧(𝑆) Value of solution 𝑆
 Collection of all the paths computed by CG
𝛬 Kernel set
𝜆 Exact (for KS) and minimum (for KO) kernel size
𝐵 Collection of buckets
𝑛𝐵 Number of buckets
𝛾 Bucket size
𝐿> Sorted list of pairs of 𝑓𝑖𝑗 and 𝑥𝑖𝑗 variables s.t. 𝑓𝑖𝑗 > 0
𝐿= Sorted list of pairs of 𝑓𝑖𝑗 and 𝑥𝑖𝑗 variables s.t. 𝑓𝑖𝑗 = 0
𝐿 Sorted list of pairs of variables obtained by concatenating 𝐿> and 𝐿=
𝜌𝑖𝑗 Number of conflicts among (𝑖, 𝑗) and the arcs associated with variables in 𝐿>
𝜏𝑖𝑗 Number of times the arc (𝑖, 𝑗) appears in a path generated by CG
 (𝑓 ∗ , 𝑥∗) Value of the best incumbent integer solution
21 
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Appendix. Mathematical notation

Table A.7 reports a list of the notations used throughout the paper.
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