A TWO-POINT HEURISTIC TO CALCULATE THE STEPSIZE IN
SUBGRADIENT METHOD. APPLICATION TO A NETWORK
DESIGN PROBLEM.
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Abstract. We introduce a heuristic rule for calculating the stepsize in the subgradient method
for unconstrained convex nonsmooth optimization which, unlike the classic approach, is based on
retaining some information from previous iteration. The rule is inspired by the well known two-point
stepsize by Barzilai and Borwein (BB) [6] for smooth optimization and it coincides with (BB) in case
the function to be minimised is convex quadratic.

Under the use of appropriate safeguards we demostrate that the method terminates at a point
that satisfies an approximate optimality condition.

The proposed approach is tested in the framework of Lagrangian relaxation for integer linear pro-
gramming where the Lagrangian dual requires maximization of a concave and nonsmooth (piecewise
affine) function. In particular we focus on the relaxation of the Minimum Spanning Tree problem
with Conflicting Edge Pairs (MSTC). Comparison with classic subgradient method is presented. The
results on some widely used academic test problems are provided too.

Keywords. Convex programming, Subgradient method, Lagrangian relaxation,
Minimum Spanning Tree with Conflicting Edge Pairs.

1. Introduction. Subgradient method is the classic tool for dealing with the
unconstrained optimization problem:

min f(z), (L1)
where f : R™ — R is convex, Lipschitz continuous and not necessarily smooth. We
assume that M*, the set of minima of f is nonempty. It was the first implementable
algorithm with proved convergence properties. Detailed presentations are in the sem-
inal books [36] and [32], while a survey of the early stages of growth of numerical
nonsmooth optimization are in [26]. Although the birth and the development of the
family of Bundle Methods [25], [22] have provided a major improvement of the nu-
merical performance, the subgradient method is still widely used, mainly in tackling
the Lagrangian dual in Lagrangian Relaxation [I5]. This is possibly due both to its
implementation simplicity and to the possibility of using the effective Polyak stepsize
[32], [I] when the optimal objective function value is known.
Recent years have seen a renewed interest in theoretical properties of several
variants of the subgradient method, specially when some particular structure of the
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objective function is present. We recall here the contributions in [I8], [29], [30], [31],
[I7] with a rich computational experimentation in [I6].

Subgradient—type methods have been extensively investigated also as useful tools
for dealing with large scale convex problems arising in the machine learning area.
The adaptive gradient method (AdaGrad) [13] belongs to this stream of algorithms.
It is applied in cases where the objective function is the sum of many components
functions and thus is related to the incremental approach [g].

In this paper we take inspiration from the Barzilai-Borwein method (BB) [6]
which is an efficient gradient algorithm for dealing with differentiable optimization.
Similarly to the subgradient, it is a non-monotone method and the steplength along
the gradient, instead of being provided by a line search, is calculated on the basis of
a two-point approximation of the Hessian matrix, taken as a scalar multiple of the
identity matrix.

More specifically, letting xj be the current estimate of the minimum and defining

O = T — Tp_1 and g 2 Vi(xr) — Vf(xk-1) = gr — gk—1, the approximation By
of the Hessian V2 f(zy) is By, = —1I, where oy, is calculated by solving (in the least
(€75

squares sense) the secant equation Bydx = 7. Thus it is
o1
ap = argmin || =, — &l
a

and hence we obtain

AR
5;{%7

ag (1.2)

which is the BB stepsize adopted, in a classic Newton scheme, to calculate the next
iterate

Lk+1 = Tk — OpGk-

An alternative stepsize can be similarly obtained starting from the approximation
of the inverse of the Hessian matrix [6].

Here we introduce yet another possibility to calculate the gradient stepsize. To
this aim we define a quadratic model hy(d) of the difference function f(zy+d)— f(xx)
by letting

1
hy(d) = 5uk.de + gp d, (1.3)

where uy, is the prozimity parameter, which is calculated by imposing

hi(dr-1) = f(xr-1) — f(aw),
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where dy_1 = 1 — 2 = —9;. This leads to the value

2(f(zk—1) — f(@r) + g, Ok)
10k 1 '

up = (1.4)
Calculation of the proximity parameter is similar to the one introduced in [23] in the
framework of Bundle methods [19].

By minimizing hg(d) we obtain

1
dy, £ argmin hi(d) = —— gy, (1.5)
d Uk
and thus we let
1
Tpyl = T +d, = T — — i, (1.6)
U,

1
If we assume function f to be strictly convex and quadratic, that is f(z) = §xTQ9E +

bTx for Q € R™*™ and b € R", taking into account

2(f(xe—1) — f(zx) + 97 0k) = 04 Y,

1
we obtain that the stepsize — in (|1.6)), with uy calculated according to 1) coincides
U

with Barzilai and Borwein’s «y in (1.2)).

REMARK 1.1. Convexity of f guarantees uy > 0 since the numerator in
is the linearization error at xx_1 when a linear approximation of f is rooted at xy.
It is bounded away from zero in case [ is strongly conver with modulus . In this

1
case it is ux > .  The main motivation for the use of — as the stepsize in a

U
nonsmooth framework is that its calculation does not involve flifference of gradients,
thus it appears more suitable whenever gradient discontinuities can occur. On the
other hand, since the underlying model is quadratic, our stepsize is to be considered
as a heuristic choice, requiring experimental validation more than a theoretical one.

Thanks to the definition of function hg(d) and to , our approach appears
as a linearization of the proximal algorithm [33] and, in particular, can be cast in
the class of subgradient algorithms with nonlinear projections [7], where, instead of
the Euclidean norm, more general distance-like functions are taken in consideration
(see [7] also for the relationship of such family of methods with the mirror descent
algorithm introduced in [28]).

The rest of the paper is organised as follows. In Section [2]our subgradient method
is presented and its termination properties are discussed. In Section [3] as a possible
application, we introduce a network design problem known in literature as the Min-
imum Spanning Tree problem with Conflicting Edge Pairs (MSTC). It is a variant
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of the classic Minimum Spanning Tree problem where, taking into account a set of
conflicting edges, the aim is to determine the cheapest spanning tree with no edge
in conflict [37], [34], [9], [10] [11], [35]. We adopt the Lagrangian relaxation scheme
discussed in [I0], [2], [12] and apply to the resulting Lagrangian dual our subgradient
method. The algorithm is tested against several instances from the literature. The
results of our algorithm on some academic test problems commonly adopted in convex
nonsmooth optimization are presented too. Some conclusions are drawn in Section [4]

2. The subgradient method. The iterative scheme of the classic subgradient
method for minimization of a convex and not necessarily differentiable function is
analogous to the gradient method, the only difference being the replacement of the
gradient by the subgradient [36], [32]. Thus the iterative scheme is again

Lk+1 = Tk — Gk,

where gy is an element of O f(zy), the subdifferential of f at point x. Based on (1.4))
and (1.6, we propose the following choice of the stepsize:

1912

ap = .
2(f(wh—1) — f(@r) + g5 %)
t
In classic subgradient scheme the stepsize «y is usually put in the form oy = ﬁ
9k
and the more popular settings of the sequence {t} ensuring convergence are:
i) Constant step: t = h.
ii) Polyak stepsize:
= L@ -/ (2.1)
gkl
where f* is the optimal value of f or, possibly, a lower bound.
o0
iii) Nonsummable diminishing: ¢, — 0 and Z tp = o0.
k=1
o0 o0
iv) Square summable but not summable: t; — 0, Z t7 < oo and Z t, = oo.
k=1 k=1
Our choice corresponds to the sequence
K} 2
Y 19w 129 2.2)

2(f(zk—1) — f(xx) + g, k)

We state now the basic scheme of our Nonsmooth Barzilai-Borwein (NSBB) al-
gorithm as follows.

NSBB algorithm



Step 1 Initialization. Select two starting points zg,z; € R™. Calculate f(zg). Set
Srest = f(xo) Fix the maximum number of allowed iterations k.. and the
stepsize safeguards 0 < t,,, < tps. Set the iteration counter k = 1.

Step 2 Calculate f(zy) and gx € Of (xr). If f(ar) < foest then set frest = f(ak).
Calculate t;,. If t <t,, then set ty =t,,. If tx > tj; then set ¢t = tpy.

Step 3 Calculate

tr
Tk41 = Tk — mgk

Set k = k + 1. If success occurs in a termination test STOP, else return to

Step 2.
Some discussion on NSBB algorithm is presented in what follows. We recall first that
the subgradient method is nonmonotone, as it is not guaranteed that f(zr11) < f(zx).
It is based, instead, on the property of any anti-subgradient direction of being a
minimum approaching one [19]. In fact it is possible to get closer to a minimiser
while moving along it, provided the stepsize is not too large. The need of introducing
appropriate safeguards is thus motivated by the heuristic nature of our stepsize,which
does not prevent the choice of too large stepsizes. They are, in fact, likely to occur
whenever the denominator in formula , which is a measure of the linearization
error between xp and xp_1, is small.

We give now a proof of the termination of the subgradient method when it is
assumed that tj is in a given interval [t,,, tpr]. The proof is an adaptation of the his-
torical convergence proof of the subgradient method with constant stepsize provided
by Shor ([36], Theorem 2.1). It is based on the following observations. Let Uy = {z |
f(z) = f(zx)} be the contour line passing through zx, and Ly = {x | g, (x —x}) = 0}
be the supporting hyperplane at x to the level set S, = {z | f(z) < f(z)}, with
normal gi. Consider now (see Figure ag(z*) = ||l=* — x|, the distance of any
point z* € M from its projection 2} onto L. Convexity of f implies f(z%) > f(xk)
and, from continuity, it follows ay(z*) > by(x*) = ||z* — x7} ||, where x} is the inter-
section of Uk with the segment joining the points * and z}. Note also that by (z*)
is an upper bound on dist(z*, Uy), the distance of z* from contour line Uy. On the
other hand it is easy to verify that

) = =)
19k
and, finally, we obtain

gy (x — x¥)

dist(x”, Ly) < bp(z7) < ap(2”) = llgl

We now state the following result.



g,j(x —x,)=0

Figure 2.1: Convergence of the subgradient method

THEOREM 2.1. Let f be a convex function and let M*, the set of minima, be
non empty. Assume that, starting from any point x1, a sequence of points {xy} is
generated by the following iterative scheme

tx

-k k=1,2,... (2.4)
gl

Tk41 = Tk

with tg € [tm,ﬁM], tm > 0. Then, for every e > 0 and x* € M*, there exist a point T
and an index k such that

t
7 —a™| < 5 (1+e)

and

Proof. From (12.3)) and (2.4)) it follows that

k
lzkpr — 22 = |lox —2* -ty ||gk I2

gel ™ )
= ap— a2+ 2 -2t LR (zg — 2)
e o]
= ok — &*||* +t; — 2tpar(z*)
S ||.’L'k — LU*||2 + ti - 2tkbk(l‘*).
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Now, suppose for a contradiction that by (z*) > tas(1+¢€)/2 for every k. By repeatedly
applying the inequality (2.5)), we have that for every k it holds

k k
|k — 2| < oy — 27|+ Yt —2) tibi(a”)
i=1 i=1

k k
< o =2t P+ 8 — (140D
i=1 i=1
k k
< lm =2 Pty Y ti—tu(l+€)> t;
= =1
< oy — 2|2 — ektimtm

which contradicts ||j41 — 2*[|> > 0 for all k. O

REMARK 2.2. Convergence of NSBB proved in the above theorem is rather weak.
It can be strengthened if we let the interval [ty tar] be dynamically updated, that is if
we assume ty € [tgf),tg\]fj)]. Under such hypothesis, NSBB can be seen as a particular
case of the subgradient algorithm with nonlinear projections (SANP) discussed in [7],
when the distance-like function adopted is based on the squared Euclidean norm. If
we assume that both sequences {tgf)} and {tg\]j[)} are nonsummable diminishing (with

t < tg\]f[), Vk), the convergence properties described in [T, Theorem 4.1., hold true
for NSBB as well.

3. Applications of the method. We present in this Section the results of the
implementation of our algorithm. We have considered two types of tests, a nons-
mooth optimization problem coming from the application of Lagrangian relaxation
[21] to a network optimization problem and a set of academic examples widely used
in numerical nonsmooth optimization [4].

3.1. Lagrangian relaxation of MSTC. We focus here on a Lagrangian relax-
ation scheme [I5], [20] applied to a graph optimization problem known in literature as
the Minimum Spanning Tree Problem with Conflicting Edge Pairs (MSTC), a variant
of the Minimum Spanning Tree in which there are mutually exclusive edges. More in
detail, given an undirected and edge-weighted graph G = (V, E, P), where P C EX E
represents the set of conflict edge pairs, MSTC consists of finding a minimum span-
ning tree of G with no edges in conflict. In the following, we denote by n and m the
cardinality of the vertex set V' and edges set F of G, respectively. The set of conflict
edge pairs P is formally defined as follows:

P = {{ei,e;} : ei,e; € E, e; andej cannot co — exist in the spanning tree}.

To each edge e; € E is associated a weight w,, and the set of edges x(e;) in
conflict with it. A spanning tree T(Vr, E7) of G is a connected subgraph of G where
Vr =V, Er C E and |Ep| =n—1. The weight of T is equal to W(T') = >_, . we,

and T is classified conflict—free if and only if there are not conflicting edges in Er.
7



We now report the classical Subtour Elimination formulation of the Minimum
Spanning Tree problem [10] in which a binary variable x. is associated with each edge
of G with the following meaning:

S 1 if edgeeis selected for the conflict—free tree;
€7 1 0 otherwise.

MSTC is as follows.

z* :minZwexe (3.1)

ecE
subject to: (3.2)
S =|V|-1, (3.3)
ecE
> w <|S|-1, ScV,|S|>3, (3.4)
ecE(S)
Te, +xo; <1, {es,e5} € P, (3.5)

z. €{0,1}, e€FE.

The objective function minimizes the weight of the spanning tree. Constraint
(3.3) assures that the solution contains exactly n — 1 edges while constraints (3.4]) are
the classical subtour elimination ones. Finally, (3.5)) guarantee that two edges in con-
flict cannot belong to the solution. Constraints (3.6]), finally, are variable restrictions.

We adopt the same relaxation scheme as in [I0] (a different relaxation approach,
leading to a NP-hard relaxed problem, has been recently introduced in [35]). Here
the conflict constraints (3.5) are relaxed via the Lagrangian multipliers A;; > 0,
{ei,e;} € P (grouped into the vector X of appropriate dimension). We come out with
the relaxed problem LR(A):

2(A) =min Z WeTe + Z Aij(Te; + 2, — 1) (3.7

e€E {es,e;}€P
subject to: (3.8)
> we=1[V[-1, (3.9)
eckE
Y ow<|S|-1,  ScV|S| =3, (3.10)
e€E(S)
z. €{0,1},e € E. (3.11)



Apart the constant term (— Z Aij), problem (3.7)—-(3.11) is a classical minimum

{ei,e;}EP
spanning tree one having the following edge weights:
We, if x(e;) =0
We,(A) = ¢ we, + Z Aij otherwise
ejex(e;)

Function z(A), referred to as the Lagrangian function, provides a lower bound on the
optimal value of MSTC.

The Lagrangian dual (LD) problem, aimed at finding the best lower bound, is
defined as:

ZLp = r/r\lg())(z(/\). (3.12)

The Lagrangian dual is a maximization problem where the objective function is non-
smooth, in particular it is concave and piecewise affine. We have applied to it the
method described in Section

A subgradient g(\) of z(\) can be easily calculated once an optimal solution x(\)
to the relaxed problem is available. The generic component of g(\) is:

Gij(A) = we, (A) + ¢, (N) — 1, (e;,e;) € P, (3.13)

thus iteration k& of any subgradient method, taking into account the non negativity
constraints, consists in updating the Lagrangian multipliers as follows:

)\E;-CH) = max (0, )\E;-c) + akgij()\(k))), (ei,ej) € P. (3.14)

3.1.1. Computational results for MSTC. In this section, we describe the
results of the NSBB algorithm on the Lagrangian dual of MSTC. The algorithm has
been coded in C++ using the LEMON graph library [14]. All tests were performed
on a machine (iMac mid 2011) with an Intel Core i7-2600 3.4 GHz processor and 8
GB of RAM.

Formula for calculation of t; has been implemented in the form

. LA ReNRdI
e 2(000) - g(AF)TM —AF-D) — A (AE-1))’

(3.15)

to avoid possible occurrence of zero denominator (see Remark . We have em-
bedded into the basic algorithmic scheme the following stopping conditions at Step
3:

o k< kpax = 500;

o AW ZXE-D| <o,



Parameter Considered values Target

€ {0.00001, 0.0001, 0.001} 0.00001
tm {0.000001, 0.000005, 0.00001} 0.000001
{0.001, 0.01, 0.1} 0.001

Table 3.1: Parameter settings

where k is the iteration counter. The value of ¢;; has been dynamically updated in

the form tg(;) = m

All parameters of NSBB have been tuned by the IRACE package [24], an auto-
matic configuration tool for parameter setting. Table reports, for each parameter,
the set of tested values (Considered values) and the corresponding target value (Tar-
get) in the best configuration found by IRACE.

The computational tests have been carried out on the instances proposed in [37]
(dataset 1) and in [11] (dataset 2). The instances of the first dataset are classified
into two types: type 1 (may have no conflict—free solution) and type 2 (there is at
least one conflict—free solution). The instances of dataset 2 are referred to as type 3
instances and, for all of them, the presence of a conflict-free solution is guaranteed.
The datasets are available here: http://www.dipmat2.unisa.it/people/carrabs/
www/| or, alternatively, upon request to the authors. Readers can refer to [37] and
to [I1] to have more information concerning the generation and the characteristics of
the instances of these datasets.

We compare the solutions found by NSBB on all instances with those provided
by two other classic algorithms for black box convex functions (no special structure
required). We consider the classic subgradient with nonsummable diminishing and
with Polyak stepsize sequences, respectively. In order to carry out a fair comparison,
we have extended the stopping conditions of NSBB to all the algorithms.

To report the results in an easy and compact form, we use the graphics of Fig-
ures[3.1] and [3:3] These graphics were generated by using both the detailed results
presented and commented in the Appendix, and the ones given in [I0]. Notice that
the three algorithms are compiled and executed on the same machine and then their
CPU times are directly comparable.

We start our analysis by evaluating the quality of the lower bounds found by Sub-
gradient, Polyak, and NSBB algorithms. To this end, for each instance, we computed
first the best lower bound as the maximum one among the lower bounds returned by
the three algorithms and from those presented in [I0]. Then, we compared the lower
bound of Subgradient, Polyak, and NSBB with such best lower bound. The results
of this comparison are shown in the charts of Figure [3.I] which was generated by
considering the results on all the instances from dataset 1 and 2.
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Comparison with the best lower bounds
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Figure 3.1: Percentage of best lower bounds found by the algorithms within the
computational time reported on the x-axis

The horizontal axis in Figure [3.I] reports the computational time in seconds and
the vertical one shows the percentage of best lower bounds found within that time.
This means that the faster the growth of a curve, the better the performance. The
chart in Figure [3.1] certifies the effectiveness and good performance of NSBB that
finds the best lower bound for the ~58% of the instances in 86 seconds. The other
two algorithms are significantly less effective as Subgradient and Polyak find only the
~27% and ~20% of best lower bounds, respectively.

As for the time needed to reach the best result, we observe that subgradient
requires about 43 seconds to reach its peak (27%), while the same result is gained by
NSBB in 2 seconds only. Moreover, NSBB requires only one second to find the 20%
of the best lower bounds, while Polyak reaches this peak after 185 seconds.

Figure [3.1] is about the percentage of instances where each algorithm found the
best lower bound. Additional information is reported in Figure [3.2] The horizontal
axis reports the percentage gap from the best lower bound at the end of the com-
putation, whereas the vertical one shows the percentage of instances for which the
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Percentage of instances

00% 05% 10% 15% 20% 25% 3.0% 35% 4.0% 45% 5.0% 10.0% 100.0%
Percentage Gap at termination

—>»= Subgradient --m:-Polyak —=—NSBB

Figure 3.2: Cumulative chart of the percentage of instances solved within a given gap
at termination.

percentage gap returned by the algorithm at termination is lower than or equal to
the value reported on the horizontal axis. This means that the faster the growth of a
curve, the better the effectiveness of the corresponding algorithm.

For x=0%, the curves of Figure show the percentage of instances for which
the algorithms found the best lower bounds. These percentages are equal to 27%,
20%, and 58% for Subgradient, Polyak, and NSBB algorithms, respectively, and they
coincide with their peaks already observed in Figure (3.1

The solid curve of NSBB shows that the percentage gap from the best lower
bound is lower than or equal to 0.5%, for ~90% of the instances, and to 1% for ~96%
of them. Less effective are the other two algorithms because Subgradient finds a lower
bound with a gap within 0.5% for 71% of the instances whereas Polyak for 63% of
them. These are values significantly lower than the ones obtained by NSBB.

By considering the percentage gap of 1%, the lower bounds of Subgradient are
within this threshold for 89% of the instances whereas the ones of Polyak for the 69%
of instances. Summarizing, the results of Figures and [3:2 have proven that the
lower bounds provided by NSBB coincide with the best lower bounds or are very close
to them for most of the instances of datasets 1 and 2.
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Comparison with the optimal solutions
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Figure 3.3: Percentage of optimal solutions found by the algorithms within the com-
putational time reported on the x-axis

To further investigate the effectiveness of the three algorithms, we compare in
Figure [3:3] the solutions they provide with the optimal ones. The chart is built by
using the 144 instances, from both dataset 1 and 2, for which the optimal solution is
known. Thus the y-axis is now associated with the percentage of optimal solutions
found by the algorithms.

The results shown in Figure[3-3|reveal again that NSBB performs best but Subgra-
dient obtains similar results. Indeed, the peaks of NSBB and Subgrdient are equal to
~45% and ~41%, respectively, and they are obtained in 42 seconds. However, NSBB
reaches the peak of Subgradient (~41%) in 6 seconds only. Finally, Polyak finds the
optimal solution for 29% of instances and this result is obtained in 44 seconds.

The stepsize rule introduced in this paper is of heuristic nature and, as discussed
in previous Sections, the use of safeguards is necessary. An experimental validation
of the approach can be provided by assuming as an indicator the number of times
(iterations) when the NSBB stepsize is active, that is it falls inside the safeguard

interval (t), € (tfﬁ), tg\]ff))). Such value is indicated as Range and is reported in Table
13



ITER | Range | Range%
dataset [37] 47.79| 44.95| 94.05%
dataset [II] (small) | 96.07| 87.96| 91.56%
dataset [1I] (large) | 77.90| 65.09| 83.55%

Table 3.2: New stepsize occurrences.

Dataset 1 Dataset 2

9% Gap from best/opt
% Gap from best/opt

s0 60 a0 s0 60
Iterations Iterations

- - -Subgradient - Polyak ——NsBB = = =Subgradient e Polyak  ———NSBE

(a) (b)

Figure 3.4: Behaviour of the three algorithms, according to the maximum number of
iterations, on (a) the first dataset and (b) the second dataset.

for the various groups of instances, together with the average number of iterations
ITER.

The average percentage (Column “Range%”) appears satisfactorily high and in-
dicates that relatively seldom the safeguards enter into play. Note also that column
ITER reveals that the average number of iterations is significantly smaller than the
maximumm allowed (500).

Finally, to better highlight the performance of the three algorithms in terms of
number of iterations, we plot in Figure the percentage gap from the best-known
solution value for different values of the maximum number of iterations, in the range
[10,100], with step of 10.

Note that faster decrease indicates better effectiveness. We observe that for the
first data set NSBB is uniformly the most effective, while for the second dataset it
becomes the best as the number of considered iteration is sufficiently large. A more
detailed discussion of the results is given in the Appendix.

3.2. Academic examples. We have considered the following seven test func-
tions for unconstrained convex nonsmooth optimization [27],[4]. For each function we
report the standard starting point here indicated as (9, the minimum z* and the
optimal value f*.
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1. Dem-Mal: f(z) = max{5xy + 2o, =521 + 2o, 27 + 23 + dao}; (0 = (1,1);
2* = (0,-3); f* = 3.

2. Mifflin: f(x) = —21 + 20max{z? + 23 — 1,0}; (9 = (0.8,0.6); z* = (1,0);
fr=-L

3. LQ: f(x) = max{—x; — x9, —21 — T2 + 25 + 25 — 1}; 2O = (=0.5,-0.5);

x :(\/57%)5 f*:_\/é'

4. MAXQ: f(z) = max {z2}; 20 =0,i=1,...,10; 20 = —i, i =11,...,20;

1<i<20 v
z*=(0,...,0); f*=0.

5. QL: f(w) = max fi(@); fi() =2t +ad; fole) = 23 +ad+10(—dzy — 22 +4),

fo(z) = 22+ 224+10(—21 — 229 +6) }; (0 = (=1,5); * = (1.2,2.4); f* =T7.2.
6. CB2 f(x) = max{z?+a3, (2—21)>+(2—x2)2, 2e(-=1+22) 1, 2(0) — (1, —0.1);
x* = (1.1392286,0.899365); f* = 1.9522245.
7. OB3: f(x) = max{z} + 23, (2 — 21)? + (2 — 29)?, 2e(~o1H22) s 2(0) = (2, 9);
ot = (1,1); f* =2.

In dealing with the academic examples we have set the following stopping condi-
tions at Step 3:
o k < ke = 1000;
o ||z —z*|| <n OR f(zy) — f* <n, with n = 0.01.
The interval (¢,,,tas) has been dynamically updated in the form (22291 1) (see Re-
mark . As for calculation of t; at Step 2, taking into account Remark we
have set

tk*h if (f(xkfl) - f(xk) + g];rék) < n= OOOla
ty = [10%)1 Il g
2(f(xr—1) — f(@r) + 9] 0k)’

otherwise.

We have compared NSBB with four versions of classic subgradient method. The
first one, referred to as Polyak, is based on stepsize . The remaining three
implement diminishing nonsummable sequences, by setting ¢, = 1/k, ¢, = 1/ VEk,
tr, = 1/log(k + 1); they are referred to as harmonic, square root and logarithmic
sequences, respectively. The termination tests are the same as for NSBB.

The results in terms of number of function—subgradient evaluations are in table
As for MSCT, the column “Range” reports the number of times the calculated
stepsize has been within the prefixed range (t%),t%’f])). The “*” symbol indicates
that ¢, has been allowed to range in the interval (0,00). The total percentage of
tr € (9 11 is 74%.

Our stepsize rule appears rather effective and reliable compared with the classic
ones, which provide results somehow erratic, as several times the max number of
iteration is reached with no satisfaction of the stopping criterion.
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Function | # variables | NSBB | Range | Polyak | Subg-harm. | Subg-square | Subg-log
Dem-Mal 2 12 9 76 > 1000 82 62
Mifflin 2 28 24 103 18 15| > 1000
LQ 2 3* - 2 18 3 10
Maxq 20 46* - 139 > 1000 > 1000| > 1000
QL 2 27 20| > 1000 > 1000 93| > 1000
CB2 2 34 20 132 14 14| > 1000
CB3 2 22 19 11 20 83 947

Table 3.3: Academic test problems. Function—subgradient evaluations

4. Conclusions. We have introduced a two—point—based stepsize rule in subgra-
dient method for convex nonsmooth optimization. Our rule coincides with Barzilai—
Borwein method when applied to a convex quadratic. The numerical experience both
on a Lagrangian relaxation example and on some academic test problems has revealed
satisfactory.
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7. Appendix: Detailed computational results. We report here the detailed
results of the comparison among the Subgradient, Polyak and NSBB algorithms. The
instances of dataset 2 are partitioned into two groups: the small instances, having
at most 50 nodes, and the big ones, having more than 50 nodes. In implementing
Polyak’s stepsize we have taken as f* the value of the feasible solution provided by
the heuristic used in [10].

In Table we compare the solutions found by NSBB with the ones found by
the classic subgradient with nonsummable diminishing and with Polyak stepsize se-
quences, respectively, on the instances of dataset 1 [37]. Under the instance heading,
we report the following characteristics of the instances: a numerical identifier (id),
the number of nodes (n), edges (m) and conflict pairs (p). Column Opt reports the
optimal solution value or the best known solution value whenever the “*” symbol is
present. Then are reported the lower bound (LB), the computational time (Time)
(in seconds) and the percentage gap (Gap) from the Opt column value for Subgradi-
ent, Polyak and NSBB algorithms. The Gap value is computed by using the formula:
100 x 9P=LB - At the bottom, AV G shows the average of computation time and of

Opt
percentage gap for each algorithm. The last row indicates that NSBB is the fastest
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Instance Subgradient Polyak NSBB

ID n m 3] Opt LB Time Gap LB Time Gap LB Time Gap
1 50 200 199 708 703.58 023 0.62% 704.88 0.31 0.44% 705.50 012 0.35%
2 50 200 398 770 755.78 029  1.85% 759.15 0.41 1.41% 759.34 013 1.38%
3 50 200 597 917 837.56 0.32 8.66% 819.28 0.48 10.66% 859.65 0.20 6.25%
Type 1 4 50 200 995 1324 936.70 0.40 29.25% 850.26 0.73  35.78% 940.63 0.18  28.96%
Feasible 5 100 300 448 4041 3864.55 077  4.37% 4029.57 1.04 0.28% 4007.11 0.51 0.84%
6 100 300 897 5658 4543.19 1.28 19.70% 3132.00 2.03  44.64% 4847.60 0.88 14.32%
7 100 500 1247 4275 4018.28 2.04 6.01% 4266.63 2.85 0.20% 4212.57 1.72 1.46%
8 100 500 2495 5997 4705.01 2.30  21.54% 4896.23 484 18.36% 5029.08 1.80 16.14%
9 100 500 3741 7665% 5053.21 2,52 34.07% 3742.73 540  51.17% 5218.64 162 31.92%
Type 1 10 200 600 1797 15029* 10776.40 4.54  28.30% 7386.00  10.31 50.86% 11921.60 3.79  20.68%
F.Unknown 11 200 800 3196 22110* 16352.50 7.98  26.04% 11939.00  19.30  46.00% 18367.30 6.75  16.93%
12 50 200 3903 1636 1038.44 1.24  36.53% 931.17 2.12 43.08% 1020.74 0.52  37.61%
13 50 200 4877 2043 1106.81 1.61  45.82% 905.49 2.42 55.68% 1099.63 0.84  46.18%
14 50 200 5864 2338 2331.73 0.75  0.27% 2338.00 0.69 0.00% 2338.00 0.66  0.00%
15 100 300 8609 7434 7434.00 024  0.00% 7434.00 0.25 0.00% 7434.00 024 0.00%
16100 300 10686 7968 7968.00 017  0.00% 7968.00 0.18 0.00% 7968.00 0.17  0.00%
17 100 300 12761 8166 8166.00 011 0.00% 8166.00 0.11 0.00% 8166.00 0.11  0.00%
18 100 500 24740 12652 5528.19 9.66 56.31% 4743.83 1936 62.51% 5553.21 4.78  56.11%
19 100 500 30886 11232 5655.70  16.60 49.65% 5040.59  24.55 55.12% 5679.48  11.12  49.43%
20 100 500 36827 11481 11481.00  21.68 0.00% 11481.00  23.15 0.00% 11481.00  22.23 0.00%
21 200 400 13660 17728 17728.00 0.08  0.00% 17728.00 0.04 0.00% 17728.00 0.04  0.00%
22 200 400 17089 18617 18617.00 020 0.00% 18617.00 0.05 0.00% 18617.00 0.05  0.00%
23 200 400 20470 19140 19140.00 0.05  0.00% 19140.00 0.05 0.00% 19140.00 0.05  0.00%
24200 600 34504 20716 20716.00 148 0.00% 20716.00 1.57 0.00% 20716.00 154  0.00%
Type 2 25 200 600 42860 18025 18025.00 0.74 0.00% 18025.00 0.77 0.00% 18025.00 0.75 0.00%
26 200 600 50984 20864 20864.00 0.57  0.00% 20864.00 0.58 0.00% 20864.00 0.58 0.00%
27 200 800 62625 39895 39895.00  41.16  0.00% 39895.00  43.40 0.00% 39895.00  41.78  0.00%
28 200 800 78387 37671 37671.00 6.36  0.00% 37671.00 6.66 0.00% 37671.00 6.22  0.00%
29 200 800 93978 38798 38798.00 312 0.00% 38798.00 3.29 0.00% 38798.00 3.06  0.00%
30 300 600 31000 43721 43721.00 0.10  0.00% 43721.00 0.10 0.00% 43721.00 0.09  0.00%
31 300 600 38216 44267 44261.20 254 0.01% 44267.00 0.13 0.00% 44267.00 0.15  0.00%
32300 600 45310 43071 43071.00 0.12 0.00% 43071.00 0.13 0.00% 43071.00 0.12 0.00%
33 300 800 59600 43125 43125.00 0.17  0.00% 43125.00 0.17 0.00% 43125.00 0.16 0.00%
34 300 800 74500 42292 42292.00 020 0.00% 42292.00 0.20 0.00% 42292.00 019 0.00%
35 300 800 89300 44114 44114.00 022 0.00% 44114.00 0.22 0.00% 44114.00 0.22  0.00%
36 300 1000 96590 71562 71562.00 6.29  0.00% 71562.00 6.48 0.00% 71562.00 6.30  0.00%
37 300 1000 120500 76345 76345.00 3.71  0.00% 76345.00 3.94 0.00% 76345.00 3.66  0.00%
38 300 1000 144090 78880 78880.00 1.89 0.00% 78880.00 2.09 0.00% 78880.00 1.91 0.00%
AVG 3.78 9.71% 5.01 12.53% 3.30 8.65%

Table 7.1: Comparison on the instances of the first dataset.

and most effective algorithm with an average time equal to 3.30 seconds and a gap
from the best known solution equal to 8.65%. Subgradient is slightly slower than
NSBB and less effective with an average gap equal to 9.71%. The highest average
time and gap are those obtained by Polyak with a computational time of 5.01 seconds
and an average gap equal to 12.53%.

Table shows the computational results of the three algorithms on the small
instances of dataset 2 [II]. The AVG row shows that the three algorithms are very
fast and effective on such instances. Indeed, the computational time is lower than 1
second for both NSBB and Subgradient and it is equal to 1.14 seconds for Polyak.
NSBB, however, is again the fastest algorithm. As for effectiveness, the Gap values
of Subgradient and NSBB are very close (3.55% and 3.57%, respectively). For Polyak
the Gap value is slightly bigger (4.52%). Gap column indicates that the number of
conflict pairs p is the parameter that mainly affects the effectiveness of the three
algorithms. Indeed, for fixed number of nodes and edges, the Gap values of the three
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Instance Subgradient Polyak NSBB

ID n m_ p s LB Time _Gap LB Time Gap Time _Gap
51 25 60 18 1 347.00 0.03 0.00% 347.00 0.00 0.00% 0.00 0.00%
52 25 60 18 7 38000 000 0.00%  380.00  0.00 0.00% 000 0.00%
53 25 60 18 13 353.00 0.00 0.00% 353.00 0.00 0.00% 0.00 0.00%
54 25 60 18 19 346.00 0.00 0.00% 346.00 0.00 0.00% 0.00 0.00%
55 25 60 18 25 33600 000  0.00% 6.00 000 0.00% 000 0.00%
56 5 60 ! 31 379.63 0.05 0.36% 379.59 0.06 0.37% 0.02 0.36%
57 25 60 e 37 380.76 0.05 2.37% 379.83 0.07 2.61% 0.02 2.18%
58 25 60 71 43 37200 001  0.00% 37199 0.04  0.00% 001 0.00%
59 5 60 e 49 356.99 0.05 0.00% 356.76. 0.06 0.07% 0.02 0.00%
60 25 60 e 55 406.00 0.01 0.00% 405.99 0.02 0.00% 0.01 0.00%
61 60 124 61 38460 006 0.08% 38478 0.07  0.06% 002 0.00%
62 25 60 124 67 432.00 0.03 0.00% 431.95 0.07 0.01% 0.02 0.00%
63 25 60 124 73 423.61 0.06 7.51% 335.00 0.10  26.86% 0.01 7.94%
61 25 60 124 79 30542 006 114%  397.01  0.09  0.75% 006 0.62%
65 25 60 124 85 405.90 0.07 3.36% 398.46 0.11 5.13% 0.02 3.98%
66 25 90 41 91 311.00 0.01 0.00% 311.00 0.01 0.00% 0.01 0.00%
67 25 90 41 97 30600 001  0.00% 30600  0.01  0.00% 001 0.00%
68 25 90 41 103 209.00 0.01 0.00% 299.00 0.01 0.00% 0.01 0.00%
69 25 90 41 109 207.00 001 0.00%  297.00 0.0l  0.00% 001 0.00%
0025 90 41 115 31800 001  0.00% 31800 0.0l  0.00% 001 0.00%
25 920 161 121 305.00 0.02 0.00% 304.99 0.03 0.00% 0.02 0.00%

0.05  0.00%
0.02  0.00%

0.08  0.00% 338.90 011 0.03%
003 0.00% 343.74 009  0.07%

74025 9 161 139 0.07  0.37% 0.11 0.36% 0.03  0.34%
70025 90 161 145 0.07  0.31% 011 0.32% 0.02  0.33%
76 25 90 281 151 0.09  0.53% 012 0.64% 009 0.29%
7725 90 281 157 0.10  3.83% 015 4.15% 0.03  4.05%
78 25 90 281 163 010 1.30% 0.09  1.33%
79 25 90 281 169 010 3.95% 0.03  4.00%
80 25 90 281 175 0.09  1.98% 0.03  2.49%
81 25 120 72 181 0.02  0.00% 0.02  0.00%
82 25 120 72187 0.02  0.00% 0.02  0.00%
83 25 120 72193 0.06  0.01% 0.02  0.00%
84 25 120 72199 0.06  0.01% 0.02  0.00%
85 25 120 72205 0.02  0.00% 0.02  0.00%
86 25 120 286 211 011 0.28% 0.06  0.26%
87 25 120 286 217 011 0.02% 0.04  0.00%
88 25 120 286 223 003 0.00% 0.03  0.00%
89 25 120 286 229 0.05  0.00% 0.03  0.00%
90 25 120 286 235 290 003 0.00% 0.03
91 25 120 500 241 329 015 3.11% 0.04
92 25 120 500 247 339 0.15  4.04% 0.04
93 25 120 500 253 8 015 3.89% 0.05
94 25 120 500 259 1 0.14 1.59% 0.20 1.67% 0.15
Type3d 95 25 120 500 265 321 0.14  0.93% 0.22 1.05% 0.04
Small 96 50 245 299 271 619 019 0.00% 024 0.01% 0.17
97 50 245 299 277 604 604.00 017 0.00% 019 0.01% 604.00 0.17
98 50 245 299 283 634 634.00 0.16  0.00% 018 0.00% 634.00 0.16
99 50 245 299 289 616 615.50 031 0.08% 037 0.12% 615.50 0.19
100 50 245 299 295 595 595.00 030 0.00% 0.19  0.00% 595.00 0.16
101 50 245 1196 301 678 667.71 052 1.52% 665.69 092 1.82% 667.84 0.51
102 50 245 1196 307 681 654.24 052 3.93% 647.40 096 4.93% 650.84 0.25
103 50 245 1196 313 709 677.11 0.53  4.50% 670.03 095 5.50% 676.88 0.29
104 50 245 1196 319 639 633.32 051 0.89% 633.30 079  0.89% 0.51
105 50 245 1196 325 681 657.81 052 3.40% 652.92 096 4.12% 0.27
106 50 245 2093 331 833* 657.46 0.69 21.07% 593.69 147 28.73% 0.25
107 50 245 2093 337 835 702.27 0.70  15.90% 640.91 143 23.24% 0.27
108 50 245 2093 343 840* 662.87 0.68  21.09% 607.75 129 0.26
109 50 245 2093 349 836* 677.39 0.70 18.97% 627.59 1.33  24.93% 0.25
110 50 245 2093 355 769 691.78 0.69  10.04% 631.37 134 17.90% 0.29
11150 367 672 361 570 570.00 053 0.00% 570.00 055 0.00% 0.53
12 50 367 672 367 561 561.00 0.77  0.00% 561.00 070 0.00% 0.55
113 50 367 672 373 573 573.00 0.76  0.00% 572.40 094  0.10% 0.55
114 50 367 672 379 560 560.00 053 0.00% 560.00 055 0.00% 0.52
115 50 367 672 385 549 549.00 0.76  0.00% 548.99 0.89  0.00% 0.54
116 50 367 2687 391 612 595.08 117 277% 593.58 216 3.01% 1.16
117 50 367 2687 397 615 595.33 116 3.20% 594.13 2.11 3.39% 0.81
118 50 367 2687 403 587 575.83 122 1.90% 27 0.73
119 50 367 2687 409 634 606.27 116 4.37% 604.51 0.70
120 50 367 2687 415 643 634.98 117 1.25% 634.42 0.711
121 50 367 4702 421 726* 620.53 154 14.53% 590.46 0.70
122 50 367 4702 427 T70% 632.19 1.52  17.90% 600.12, 0.68
123 50 367 4702 433 T86* 1.54  18.12% 611.89 0.68
124 50 367 4702 439 T 154 16.46% 566.44 0.68
125 50 367 4702 445 T64% 1.53  13.34% 638.85, 0.70
126 50 490 1199 451 548 51 0.00% 167  0.00% 122
127 50 490 1199 457 530 151 0.01% 168 0.16% 1.20
128 50 490 1199 463 549 149 0.00% 129 0.09% 1.21
129 50 490 1199 469 540 1.53  0.01% 177 0.00%
130 50 490 1199 475 540 120 0.00% 124 0.00%
131 50 490 4793 481 594 2.20 1.78% 3.90 1.80%
132 50 490 4793 487 579 220 3.59% 408 3.59%
133 50 490 4793 493 589 220 2.09% 4.05  2.06%
134 50 490 4793 499 577 . 220 2.29% 3.99 .30%.
135 50 490 4793 505 592 576.00 220 2.70% 396 2.75%
136 50 490 8387 511 678% 571.30 285 15.74% 5.50  16.01%
137 50 490 8387 517 651% 565.23 284 13.17% 549 13.31%
138 50 490 8387 523 689* 589.00 287 14.51% 574 14.85%

139 50 490 8387 529 682% 588.26 2.87 4% %
140 50 490 8387 535 674% 583.41 288 13.44% 581.35 6.60 13.75%
AVG 0.66  3.55% 114  4.52%

13.11%
3.57%

Table 7.2: Comparison of three algorithms on the small instances of the second
dataset. 18



algorithms increases as p increases. As an example, if we consider the largest instances
(126-140) of the table, we observe that for the instances with id from 126 to 135 the
Gap value of NSBB is lower than 3%, while for the remaining (136-140), it increases
from 12.96% to 15.51%.

Table [7.3] shows the computational results of the three algorithms on the large
instances of the second benchmark dataset [II]. The AVG values of the last row
show that in these instances NSBB is twice faster than Polyak and 25% faster than
Subgradient. Moreover, NSBB is the most effective too with an average Gap value
equal to 7.01%, against the 7.17% of Subgradient and 7.60% of Polyak. It is worth
noting that in all the instances where a feasible solution is not known (the rows with
the symbol “-*" under the Opt heading) the best lower bound is always found by
NSBB.
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Instance Subgradient Polyak NSBB

ID n m P s Opt LB Time Gap LB Time Gap LB  Time Gap
141 75 555 1538 541 868 868.00 2.28 0.00% 868.00 2.74 0.00% 868.00 1.91 0.00%
142 75 555 1538 871 871.00 229 0.00% 870.57 3.06  0.05% 870.51 184 0.06%
143 75 555 1538 838 837.86 2.28 0.02% 837.54 3.16 0.05% 837.95 1.87 0.01%
144 75 555 1538 855 855.00 2.28 0.00% 854.83 2.50 0.02% 855.00 1.95 0.00%
145 75 555 1538 857 226 0.00% 856.67 2.78  0.04% 857.00 187 0.00%
146 Kk 555 6150 1047* 326 10.57% 926.86 826 11.47% 939.26 2,04 10.29%
147 75 555 6150 1069% 12.74% 926.85 725 13.30% 933.73 2.05 12.65%
148 75 555 6150 1040% 12.87% 859.31 7.33 17.37% 908.25 211 12.67%
149 ke 555 6150 998* 8.92% 861.96 717 13.63% 909.31 2.14 8.89%
150 75 555 6150 994% 10.22% 847.99 8.04  14.69% 894.89 2.16 9.97%
151 75 555 10762 - 872.33 8.74 920.23
152 75 555 10762 - 897.91 8.42 944.59
153 75 555 10762 - 846.75 9.19 898.63
154 75 555 10762 - 835.43 9.04 884.89
155 75 555 10762 - 866.24 8.94 910.33
156 75 832 3457 798 0.00% 796.39 0.20% 797.62 0.05%
157 75 832 3457 821 0.15% 819.78 0.15% 819.49 0.18%
158 75 832 3457 816 0.10% 814.93 0.13% 815.27 0.09%
159 75 832 3457 820 0.00% 820.00 0.00% 820.00 0.00%
160 75 832 3457 815 0.00% 814.98 0.00% 815.00 0.00%
161 75 832 13828 661 903* 826.23 8.50% 825.89 8.54% 828.95 8.20%
162 75 832 13828 667 953* 854.90 10.29% 856.61 10.11% 857.14 10.06%
163 75 832 13828 673 892* 24 7.56% 824.57 7.56% 826.41 7.35%
164 75 832 13828 679 915% 8.52% 835.88 8.65% 839.47 8.25%
165 75 832 13828 685 896* 5.94% 843.05 5.91% 844.82 596 5.71%
166 75 832 24199 691 - 848.07 868.50
167 75 832 24199 697 - 815.45 836.01
168 75 832 24199 703 - 817.75 840.29
169 75 832 24199 709 - 839.83 860.74
170 75 832 24199 715 - 852.93 877.26
171 75 1110 6155 721 87 0.01% 786.67 0.04% 786.72 0.04%
172 75 1110 6155 727 785 0.00% 784.16 0.11% 785.00 0.00%
173 75 1110 6155 733 783 0.00% 782.96 0.01% 782.99 0.00%
174 75 1110 6155 739 784 0.00% 783.74 0.03% 784.00 0.00%
175 75 1110 6155 745 797 0.07% 795.79 0.15% 796.24 0.09%
176 75 1110 24620 751 867* 6.37% 814.75 6.03% 813.62 6.16%
177 75 1110 24620 757 851% 6.89% 795.16 6.56% 796.23 6.44%
178 75 1110 24620 763 892% 9.96% 805.92 9.65% 9.62%
179 75 1110 24620 769 864% 7.12% 805.35 6.79% 6.79%
180 75 1110 24620 775 882* 9.37% 801.15 9.17% 9.13%
181 75 1110 43085 781 - 803.49
182 75 1110 43085 787 - 790.44 .
183 75 1110 43085 793 1194% 31.44% 814.84  46.77 31.76% 30.97%
184 75 1110 43085 799 - 785.92 50.83

Type 3 185 75 1110 43085 805 - g 792.80 51.48

Large 186 100 990 4896 811 1119 1117.96 0.09% 111757 1576 0.13% 0.12%
187 100 990 4896 817 1137 1134.52 0.22% 1134.41 14.56 0.23% 0.26%
188 100 990 4896 823 1113 1112.20 0.07% 1112.28 15.15 0.06% 0.15%
189 100 990 4896 829 1110 1109.32 0.06% 1109.31 1526 0.06% 0.10%
190 100 990 4896 835 1090 1088.60 0.13% 1088.45 15.10 0.14% 0.20%
191 100 990 19583 841 - 1166.80 1136.67 32.57
192 100 990 19583 847 1491% 1133.20 24.00% 1101.82 34.00  26.10% 23.75%
193 100 990 19583 853 1510% 1131.15 25.09% 1098.78 34.71 27.23% 24.63%
194 100 990 19583 859 1441% 1168.84 18.89% 1140.83 3559  20.83% 18.40%
195 100 990 19583 865 1560% 1167.81 25.14% 1137.83 3419 27.06% 24.81%
196 100 990 34269 871 - 1110.46 1086.82
197 100 990 34269 877 - 1133.88 1114.14 1147.24
198 100 990 34269 883 - 1164.32 1139.40 1176.89
199 100 990 34269 889 - 1131.12 1107.71 1144.40
200 100 990 34269 895 - 1138.86 1118.75 @ 1153.32
201 100 1485 11019 901 1079 1077.48 0.14% 1076.82 38.85 0.20% 1076.36 0.24%
202 100 1485 11019 907 1056 1054.41 0.15% 1054.31 42.26 0.16% 1054.02 0.19%
203 100 1485 11019 913 1059 1058.87 0.01% 1058.49 3841 0.05% 1058.55 0.04%
204 100 1485 11019 919 1046 1045.91 0.01% 38.94 0.16% 1045.99 0.00%
205 100 1485 11019 925 1072 1070.88 0.10% 0.08% 1070.70 0.12%
206 100 1485 44075 931 1374% 1088.31 20.79% 21.38% 1092.12 20.52%
207 100 1485 44075 937 1291% 1082.14 16.18% 16.97% 1087.75 15.74%
208 100 1485 44075 943 1344% 1076.47 19.91% 20.72% 1080.36 19.62%
209 100 1485 440 949 1286% 1079.84 16.03% 16.79% 1085.76 15.57%
210 100 1485 44075 955 1370% 1079.56 21.20% 21.88% 1085.31 20.78%
211 100 1485 77131 961 - 1068.27 1081.62
212 100 1485 77131 967 - 1070.55 1084.68
213 100 1485 77131 973 - 1078.82 1091.32
214 100 1485 77131 979 - 1090.95 1104.36
215 100 1485 77131 985 - 1076.89 1088.92
216 100 1980 19593 991 1031 1030.37 0.06% 0.08% 1029.92 0.10%
217 100 1980 19593 997 1036 1034.39 0.16% 0.15% 1034.22 0.17%
218 100 1980 19593 1003 1024 1023.85 0.01% 0.09% 1023.84 0.02%
219 100 1980 19593 1009 1025 1024.99 0.00% 0.09% 1024.98 0.00%
220 100 1980 19593 1015 1028 1027.33 0.07% 0.13% 1026.94 0.10%
221100 1980 78369 1021 1234% 1050.68 14.86% 14.89% 1059.58 14.13%
222 100 1980 78369 1027 1187* 1024.58 13.68% 13.76% 1031.56 13.10%
223 100 1980 78369 1033 1213* 1042.67 14.04% 13.60% 1048.52 13.56%
224 100 1980 78369 1039 1221% 1039.69 14.85% 14.36% 1045.12 14.40%
225 100 1980 78369 1045 1245% 1040.94 16.39% 16.44% 1045.92 15.99%
226100 1980 137145 1051 - 1028.22 1039.17
227 100 1980 137145 1057 - 1051.28 1064.84
228 100 1980 137145 1063 - 1038.61 1050.80
229 100 1980 137145 1069 - 1048.04 1058.74
230 100 1980 137145 1075 - 1040.94 1045.37  231.09 1054.43

AVG 7.17% 55.09 7.60% 7.01%
Table 7.3: Comparison of three algorithms on the large instances proposed in [I1].
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