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This paper addresses the Close-Enough Traveling Salesman Problem, a variant of the Euclidean traveling

salesman problem, in which the traveler visits a node if it passes through the neighborhood set of that

node. We apply an effective strategy to discretize the neighborhoods of the nodes and the Carousel Greedy

algorithm to appropriately select the neighborhoods that, step by step, are added to the partial solution

until a feasible solution is generated. Our heuristic, based on these ingredients, is able to compute tight

upper and lower bounds on the optimal solution relatively quickly. The computational results, carried out

on benchmark instances, show that our heuristic often finds the optimal solution, on the instances where it

is known, and, in general, the upper bounds are more accurate than those from other algorithms available

in the literature.
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1. Introduction

In this paper, we study the Close-Enough Traveling Salesman Problem (CETSP), a gen-

eralization of the classical TSP. In the CETSP, rather than visit the vertices of a graph,

the traveler must visit a specific neighborhood of each vertex. We assume that the neigh-

borhood of a vertex is represented by a circle that has this vertex as a center. Therefore,

a vertex of the graph is visited if the traveler passes within this circle or on its border.
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Formally, given a set of target points (the vertices of a graph) in Euclidean space, the

CETSP seeks to find the shortest tour that starts and ends at the depot and intersects

each circle (which is associated with a unique vertex of the graph) once.

The CETSP has a number of practical applications. For instance, consider the task of

meter reading for utility companies. Homes and businesses have meters that measure the

usage of gas, water, and electricity. Each meter transmits signals which can be read by a

meter reader vehicle via radio-frequency identification (RFID) technology if the distance

between the meter and the reader is less than r units. Each meter plays the role of a target

point and the neighborhood is a disc of radius r centered at each target point. Now, suppose

the meter reader vehicle is a drone and the goal is to visit each disc while minimizing the

amount of energy expended by the drone. Other applications include military surveillance

and forest fire detection by drones (Poikonen et al. (2017)), robot monitoring of wireless

sensor networks (Yuan et al. (2007)), and coastal surveillance by submarines.

Variants of the CETSP have been studied for several decades under different names.

Some authors assume that travel distances are Euclidean; others assume an underly-

ing street network. The covering salesman problem was introduced by Current (1981)

and Current and Schilling (1989). The geometric covering salesman problem was intro-

duced by Arkin and Hassin (1994). See also Mata and Mitchell (1995). This problem was

re-named the covering tour problem by Gendreau et al. (1997). The authors provided a

new formulation and the first exact algorithm for its solution. The Euclidean TSP with

neighborhoods was studied by Dumitrescu and Mitchell (2003). In this paper, new approx-

imation algorithm results were presented. This same problem was given the name CETSP

in about 2005 or 2006 and it is the name most commonly used today. The CETSP was

introduced into the literature by Gulczynski et al. (2006). Early work on the CETSP

includes papers by Dong et al. (2007), Yuan et al. (2007), Shuttleworth et al. (2008), Men-

nell et al. (2011), and Mennell (2009). See Silberholz and Golden (2007) for related work

on the generalized traveling salesman problem (GTSP). More recent and sophisticated

approaches to the CETSP have been presented by Behdani and Smith (2014), Carrabs

et al. (2017a,b), Coutinho et al. (2016), Yang et al. (2018), and Wang et al. (2019).

Now we discuss several of the CETSP algorithms in some detail. Mennell (2009)

and Mennell et al. (2011) propose a heuristic algorithm based on Steiner zones, that is,

the nonempty zones obtained by the intersections of the neighborhood sets, consisting of
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the following three phases: (a) identifying a collection of Steiner zones that cover every

neighborhood set; (b) representing each Steiner zone with one of its points and finding a

TSP tour over these representative points; and (c) improving upon the feasible CETSP

tour found in the previous step by possibly modifying the location of each Steiner zone’s

representative point. Computational results show that the heuristic is able to efficiently

find a good feasible CETSP tour. Moreover, the authors provide a second order cone pro-

gramming model to solve the Touring Steiner Zones Problem when the sequence of visits is

given. Finally, Mennell et al. (2011) highlight that developing lower bounds for the CETSP

is a non-trivial task.

Behdani and Smith (2014) were the first to try to solve the CETSP exactly. They

applied mixed integer programming, Benders decomposition, and an iterative algorithm.

They generated reasonably good upper and lower bounds on numerous instances. Carrabs

et al. (2017b) improved upon the work of Behdani and Smith (2014) and obtained tighten

upper and lower bounds for the instances given by Behdani and Smith (2014). Their results

were obtained by introducing a new (internal) discretization schema for the neighborhoods

and a graph reduction algorithm that significantly reduces the problem size. The results

of Carrabs et al. (2017b) are further improved by Carrabs et al. (2017a) with a heuristic

that embeds an improved version of the internal discretization scheme proposed by Carrabs

et al. (2017b) with a second-order cone programming algorithm proposed by Mennell et al.

(2011). Coutinho et al. (2016) were the first authors to propose an exact branch-and-bound

algorithm for the CETSP. The algorithm was able to solve all the instances of Behdani

and Smith (2014) to optimality. For larger instances, as expected, this exact algorithm is

less successful. Faigl (2018) proposed an unsupervised learning based approach, named

Growing Self-Organizing Array (GSOA), to solve routing problems and, in particular,

the CETSP. The author tested the performance of GSOA on the instances from Mennell

(2009). The results show that this approach is very fast, but the gap from the best known

solutions is non-trivial. In related work, Faigl et al. (2019) extended GSOA to solve a three-

dimensional variant of the CETSP. They also propose a second heuristic. Both heuristics

are very fast. In future work, it might be possible to apply sophisticated optimization

post-processors to further improve these solutions. Yang et al. (2018) developed a hybrid

heuristic that combines particle swarm optimization and a genetic algorithm. The heuristic

performed as well as the best heuristic from Mennell (2009) on the instances from Mennell



Carrabs et al.: An Adaptive Heuristic Approach to Compute Upper and Lower Bounds for the CETSP
4 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

(2009). Wang et al. (2019) extended the work of Mennell et al. (2011) and developed a

Steiner Zone Variable Neighborhood Search heuristic (SZVNS). The authors conducted

computational experiments on 842 instances and demonstrate that overall performance

with respect to solution quality and running time is high.

In this paper, we apply the Carousel Greedy algorithm (a type of generalized greedy

algorithm) to select the neighborhoods that, step by step, are added to the partial solu-

tion, until a feasible solution is generated. We develop a heuristic approach, based on these

concepts, that is able to compute tight upper and lower bounds on the optimal solution

relatively quickly. The computational results, carried out on benchmark instances, demon-

strate that our heuristic often finds the optimal solution, for the instances where it is

known. In general, our heuristic performs well with respect to the best of the existing algo-

rithms. Furthermore, we point out that our algorithm is capable of generating reasonably

tight lower bounds quickly.

The remainder of this paper is organized as follows. In Section 2, we introduce termi-

nology and notation to be used throughout the paper. In Section 3, we survey previous

research on the CETSP. In Sections 4 and 5, we introduce two procedures for the calcu-

lation of effective lower and upper bounds. In Section 6, we present our new heuristic for

the CETSP, which we call the (lb/ub)Alg. Computational results as reported in Section 7.

Finally, conclusions are provided in Section 8.

2. Definitions and notation

Given a two-dimensional plane, let N be a set of target points placed in the plane, with

|N |= n, and let v0 /∈N be the depot. The edge length between two points, vi and vj, is given

by the Euclidean distance between vi and vj and it is denoted by `(vi, vj). A circumference

Cv, with center v and radius rv, is associated with each target point v ∈N (Figure 1(a)).

Given two points a and b on the boundary of Cv, we denote by a, b the chord between

these points and by â, b the circular arc from a to b in the clockwise direction (Figure 1(b)).

The set of points within and on Cv compose the neighborhood N(v) of v. Figure 1(c) shows

the neighborhoods associated with the target points. We define C =
⋃
v∈N Cv and, without

loss of generality, we suppose that v0 /∈N(v), ∀v ∈N . A feasible tour T for the CETSP is

a cycle starting and ending at the depot v0 and intersecting every neighborhood N(v). In

Figure 1(d) we depict a feasible tour T intersecting the neighborhoods N(v1), . . . ,N(v6).
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â, b

(b)

N(v1)

N(v2)

N(v3)
N(v4)

N(v5)

N(v6)v0

v1

v2

v3
v4

v5

v6

(c)

v0

v1

v2

v3

v4

v5

v6

p1

p2

p3

p4

T

(d)

Figure 1 (a) Set N = {v1, . . . , v6} of target points and the circumferences C = {C1, . . . ,C6} associated with them.

(b) The chord a, b and the circular arc â, b. (c) The neighborhoods N(v1), . . . ,N(v6) associated with

the target points {v1, . . . , v6}. (d) A feasible tour T defined by turn points p1, p2, p3, p4, and v0.

The total cost of T is denoted by w(T ) and it is equal to the sum of the edge lengths in

T . The CETSP consists of finding the shortest tour T ∗ intersecting every neighborhood

N(v). Finally, let us define the turn points as the points of a tour where a direction change

occurs. Any tour can be uniquely identified through its turn points. For instance, the tour

T in Figure 1(d) is identified by turn points p1, p2, p3, p4, and v0. For the convenience of

the reader, all notation used in this paper is presented in Table 9.



Carrabs et al.: An Adaptive Heuristic Approach to Compute Upper and Lower Bounds for the CETSP
6 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

v

a

b c

d1

d2 d3

Figure 2 IPD scheme for k= 3.

3. The previous approaches

The computation of upper and lower bounds for the CETSP was recently addressed

in Behdani and Smith (2014), Carrabs et al. (2017a,b), Yang et al. (2018). The main idea

behind these papers is the computation of these bounds through the discretization of the

neighborhoods. More specifically, for each neighborhood N(v), we define a new discretized

neighborhood N̂(v) that is composed of some points of N(v), appropriately selected. We

refer to these points as discretization points and their selection is carried out by using a

discretization scheme. In this paper, we use the internal point discretization (IPD) scheme

proposed by Carrabs et al. (2017a,b) to discretize the neighborhoods. This scheme works as

follows. Given k discretization points, the IPD scheme divides Cv into k equal circular arcs

and, for each arc â, b, places a discretization point in the middle of the chord a, b. In Fig-

ure 2 the IPD scheme, with three discretization points, is shown. Here N̂(v) = {d1, d2, d3}.
For k= 1, the IPD schema places the discretization point at the center of the circle.

Let Ĝ = (V̂ , Ê) be the complete graph induced by discretization points, that is V̂ =⋃
v∈N N̂(v)∪{v0}. It is easy to see that the weight of any tour T̂ , that starts and ends at

the depot and that visits a discretization point in each neighborhood, is an upper bound

of w(T ∗). Figure 3 shows target points {v1, . . . , v6}, the optimal tour T ∗ (dotted lines),

and the discretized optimal tour T̂ ∗ (dashed lines). It is easy to see from this figure that

w(T̂ ∗)≥w(T ∗).

From now on, we will use the terms T and T̂ to denote feasible tours of the CETSP

computed by using the points of N(v) and of N̂(v), ∀v ∈N , respectively. To find an upper

bound of w(T ∗), as tight as possible, we compute the shortest tour T̂ ∗ by solving the

generalized traveling salesman problem (GTSP) on Ĝ. However, since the construction of
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Figure 3 The discretized optimal tour T̂ ∗ and the optimal tour T ∗.
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Figure 4 In red the distance between the turn point p1 and the discretization point closest to it (d3). This

distance, multiplied by 2, is the discretization error ξ(v) that occurs on N̂(v) due to the use of the

discretization points.

T̂ ∗ is carried out by using only the discretization points, a discretization error ξ(v) occurs,

in each neighborhood N̂(v), with respect to the turn point pi of T ∗ in N(v). If di is the

discretization point of N̂(v) closest to the turn point pi, then ξ(v) is equal to two times

the length of pi, di. For instance, in Figure 4 the neighborhood N(v) is discretized by using

three points d1, d2 and d3. Since the tour T ∗ intersects N(v) at the turn point p1, then ξ(v)

is equal to two times the length of p1, d3, one time to come from p1 to d3 and another one

to come back.

Note that the maximum distance between p1 and d3, on the circular arc â, c, occurs

when d3 coincides with the points a or c. From trigonometry, the length of a, d3 is equal to
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2rvsin(π
k
) (see Carrabs et al. (2017a) for more details). Now, since the turn points of T ∗

are unknown, we always set ξ(v) to this maximum distance.

In the following, to denote the discretization error carried out on a neighborhood N̂(v)

by using k discretization points, we use the notation ξk(v).

From the information reported above, we derive that, by subtracting from w(T̂ ∗) the

discretization errors associated with any discretized neighborhood, the resulting value is a

lower bound of w(T ∗):

lb1 =w(T̂ ∗)−
∑
v∈N

ξ(v). (1)

In Carrabs et al. (2017a), we provide a detailed description of how this lower bound is

derived. For the convenience of the reader, this description is included in the Appendix.

4. Lower bound computation

From equation 1, we know that the lower bound value depends on the values of w(T̂ ∗) and

ξ(v), ∀v ∈N . In particular, as w(T̂ ∗) increases, the quality of the lower bound increases.

On the other hand, as
∑

v∈N ξ(v) increases, the quality of the lower bound decreases. In

this paper, we propose a procedure, named lbc, that tries to maximize the lower bound

value by computing it on a subset of target points appropriately selected for this aim. Our

approach is based on the following observation.

Observation 1. Let Ĝ and Ĝs be the graphs induced by discretization points used to

discretize the neighborhoods of N and Ns ⊂ N (we define Ns below), respectively. The

following properties hold.

1. Any feasible tour of CETSP in Ĝ is a feasible tour for Ĝs also.

2. The cost of the optimal tour T̂ ∗ of Ĝ will always be greater than or equal to the cost

of the optimal solution T̂ ∗s for Ĝs, i.e., w(T̂ ∗)≥w(T̂ ∗s ).

3. Any lower bound of w(T̂ ∗s ) is a lower bound for w(T̂ ∗) also.

To compute the lower bound, procedure lbc selects a subset of target points Ns ⊂ N
and it discretizes the neighborhoods associated with these target points. Subsequently, it

computes a tour T̂s by solving the GTSP on Ĝs = (V̂s, Ês), where V̂s =
⋃
v∈Ns

N̂(v), and

finally it obtains a lower bound of w(T̂ ∗) via the equation:

lb2 =w(T̂s)−
∑
v∈Ns

ξ(v). (2)
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Figure 5 (a) From the set of target points {v1, . . . , v6} we select v1, v4, and v6, and we discretize their neighbor-

hoods. (b) Tour T̂s is computed by solving the GTSP on the graph induced by points {N̂(v1)∪ N̂(v4)∪

N̂(v6)∪{v0}}.

Notice that this equation is a version of equation 1, but applied on a subset of target

points. Our aim here is to select this subset of target points so that lb2 > lb1. Figure 5

shows how the computation of the lower bound is carried out.

Given the six target points {v1, . . . , v6} shown in Figure 5(a), lbc selects the target points

v1, v4, and v6 and it discretizes the neighborhoods associated with these target points. Let

Ĝs be the graph induced by discretization points of N̂(v1), N̂(v4), N̂(v6), and v0. By solving

the GTSP on Ĝs, lbc finds the tour T̂ ∗s shown in Figure 5(b). Finally, the lower bound

of w(T̂ ∗) is obtained by subtracting from w(T̂ ∗s ) the discretization errors ξ(v1), ξ(v4), and

ξ(v6).

The lower bound computation using procedure lbc, rather than the approaches described

in Section 3, offers two main advantages. First of all, this computation is faster because the

GTSP problem is solved on graph Ĝs which is usually much smaller than Ĝ. The second

advantage is the ability to produce tight lower bounds due to an appropriate selection of the

target points to use. Indeed, if on one hand w(T̂ ∗s )≤w(T̂ ∗), on the other hand the number

of discretization errors subtracted from w(T̂ ∗) is usually much larger than the number

subtracted from w(T̂ ∗s ). For instance, let us suppose that, in the previous example, w(T̂ ∗) =

20, w(T̂ ∗s ) = 17 and the discretization errors associated with the neighborhoods of Ĝ are:

ξ(v1) = 0.4, ξ(v2) = 1.7, ξ(v3) = 0.9, ξ(v4) = 0.3, ξ(v5) = 1.2, ξ(v6) = 0.1. By computing the

lower bounds with the old and the new method, we obtain: w(T̂ ∗)−∑6
i=1 ξ(vi) = 15.4 and
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w(T̂ ∗s )− ξ(v1)− ξ(v4)− ξ(v6) = 16.2. Notice that, even if the cost of w(T̂ ∗) is 17% greater

than the cost of w(T̂ ∗s ), the subtraction of all the discretization error values from w(T̂ ∗)

significantly reduces the final lower bound. Obviously, this is not always true; it depends

on the selected target points Ns and the discretization error values. However, we will show

in Section 7 that, with the appropriate selection of the target points in Ns, the lower bound

computed with this new approach is often tighter than the lower bound computed by other

approaches proposed in the literature.

4.1. Selection of Target Points

The key point of the algorithm, described in the previous section, is the definition of

the subset Ns ⊂ N . We implemented a Carousel Greedy (CG) algorithm (denoted by

CarouselGreedy) to carry out this selection. This is an enhanced greedy algorithm which

has been shown to be both effective and computationally efficient when applied to a wide

variety of subset selection problems (see Cerrone et al. (2017)). It is evident that, based

on equation (2), to obtain a tight lower bound we seek to maximize w(T̂s) and minimize∑
v∈Ns

ξ(v). Our CG algorithm is developed taking into account both of these goals and

its pseudocode is shown in Algorithm 1.

Lines 1-7 present a greedy algorithm used to generate a solution that is, subsequently,

improved by CarouselGreedy (line 8-16). A detailed description of the FindNextPoint and

NumDiscPoints procedures is given afterwards. The number of discretization points k to

use is computed by invoking the NumDiscPoints procedure in line 2. At each iteration of

the while loop (line 3), the procedure FindNextPoint selects the next target point to be

added to Ns. If FindNextPoint fails to find a target point, i.e., v=NULL, the while loop

is stopped (line 5); otherwise a new iteration is carried out. The while loop is repeated

until either the threshold nMax is reached or the condition on line 5 is satisfied.

The first step of CarouselGreedy consists of invoking a greedy procedure to obtain the

set Ns (line 9). The cardinality of Ns is saved by the variable dim (line 10). On line 11,

CarouselGreedy removes from Ns the β oldest target points where β is equal to 5% of

dim. In the next while loop (line 12-15), the algorithm removes the oldest target point of

Ns (line 13) and invokes the procedure FindNextPoint to choose the next point to add to

Ns. This operation is repeated α · dim times with α= 30. Note that in this while loop the

cardinality of Ns is always equal to 95% of dim, if FindNextPoint never returns NULL.
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Algorithm 1: CarouselGreedy

1 Greedy (N,Ns, v0,∆, nMax)

2 k←NumDiscPoints(N,Ns, v0,∆, nMax);

3 while |Ns| · k≤ nMax do

4 v←FindNextPoint(N,Ns, v0,∆, k);

5 if v=NULL then break;

6 else Ns←Ns ∪{v};

7 return Ns;

8 CarouselGreedy (N,v0, α,β,∆, nMax)

9 Ns← Greedy(N,∅, v0,∆, nMax);

10 dim← |Ns|;
11 Remove the β oldest target points from Ns;

12 while iter≤ α · dim do

13 Remove the oldest target point from Ns;

14 Ns←Ns ∪FindNextPoint(N,Ns, v0,∆, k);

15 iter++;

16 return Greedy(N,Ns, v0,∆, nMax);

After the end of the while loop, CarouselGreedy invokes again Greedy on Ns (line 16) to

restore the original cardinality dim, if possible. The final subset Ns is returned.

The selection of more promising target points is carried out by FindNextPoint ; the

pseudocode is shown in Algorithm 2. In the foreach loop (line 1-5), the procedure assigns to

each target point v, not yet selected, a “score” val(v). That is, for each point vi ∈Ns∪{v0},
we compute its distance wi from v. This distance is computed as the distance `(v, vi) minus

the radii of the circumferences, Cv and Cvi . The higher this distance wi is, the greater will

be the score assigned to v. Here, we used wi instead of `(v, vi) to allow negative values

when Cv and Cvi intersect each other. Indeed, in this case, we do not want to classify

vertex v as promising because it is too close to vi. The next step consists of selecting the

four vertices of Ns∪{v0} with the lowest wi values (line 3). If |Ns|< 4, then the procedure

selects all the vertices in Ns. A weighted average µ is computed using the wi values (line
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Algorithm 2: FindNextPoint(N,Ns, v0,∆, k)

1 foreach v ∈N \Ns do

2 Compute wi← `(v, vi)− rv− rvi ∀vi ∈Ns ∪{v0};
3 W.l.o.g. let v1, v2, v3, and v4 be the four vertices of Ns ∪{v0} having the

minimum wi value, respectively;

4 µ← 8w1+4w2+2w3+w4
15

;

5 val(v)← Γv∆µ− ξk(v);

6 v′← arg max
v∈N\Ns

{val(v)};

7 if val(v′)> 0 then return v′;

8 else return NULL;

4). More specifically, we assign a priority to the selected vertices according to their wi

values (smaller is better). In particular, the priority assigned to wi has to be double the

priority assigned to wi+1. For this reason, w1 is multiplied by eight, w2 by four, and so on.

To normalize the value of µ, this sum is divided by the sum of these priorities. Finally,

the score val(v) is computed by multiplying µ for the two parameters ∆ and Γv and by

subtracting from the obtained value the discretization error ξk(v). The most promising

target point v′ is the one with the maximum score (line 6). If the score val(v′) is positive

then v′ is returned (line 7), otherwise the procedure returns NULL (line 8) because v′ is

not considered promising.

There are three key parameters in this procedure: ∆, Γv, and k. ∆ is used to increase or

decrease the value of µ in the computation of val(v). In particular, ∆ is increased as the

probability of finding new promising points is increased. Notice that this parameter does

not depend on the vertex v considered. The parameter Γv is a “recommendation value”

associated with each vertex v and it is used to influence the selection of vertices carried out

by FindNextPoint. Indeed, the higher Γv is, the higher is the probability of selecting the

vertex v. In Section 6, we describe in detail how the ∆ and Γv parameters are dynamically

updated. Let us suppose, in this section, that these parameters are equal to 1 so that the

computation of val(v) is not affected by them.

The third parameter of the procedure is k which affects the discretization error value

ξk(v). In particular, as k increases, ξk(v) decreases. Also, as |Ns| increases, ξk(v) decreases.
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Algorithm 3: NumDiscPoints(N,Ns, v0,∆, nMax)

1 k= 1;

2 while TRUE do

3 Ns←∅;
4 while |Ns| · k≤ nMax do

5 v←FindNextPoint(N,Ns, v0,∆, k);

6 if v=NULL then break;

7 else Ns←Ns ∪{v};

8 if
ö
nMax
|Ns|

ù
>k then k← k+ 1;

9 else return k ;

Therefore, k and |Ns| are closely related values. Now, if nMax is the total number of

available discretization points, then the ratio nMax
|Ns| is the number of discretization points

associated with each neighborhood N(v), v ∈ Ns. The idea is to assign to k a value as

close as possible to nMax
|Ns| . However, since |Ns| depends on k, we compute this value with

an iterative procedure, named NumDiscPoints; the pseudocode is shown in Algorithm 3.

We start with k= 1 and we use this value to build Ns through a greedy algorithm (lines

3-7) whose while loop is the same as in the greedy algorithm used in Algorithm 1 (lines

3-6). After the construction of Ns, we check to see if k is less than nMax
|Ns| (line 8). If this is

the case, then we have to increase the value of k so that |Ns| increases and nMax
|Ns| decreases.

Otherwise, we obtained the value we were looking for and we return k (line 9).

At this point, we are ready to describe how we compute the lower bound of w(T ∗). Given

the set of target points Ns selected by CG, for each target point v ∈ Ns, we discretize

its neighborhood N(v) by using the internal discretization scheme proposed by Carrabs

et al. (2017a,b) with
⌈
nMax/|Ns|

⌉
discretization points. Note that, by construction, |Ns| ≤

nMax. If CG selects nMax target points, then just one discretization point is used for

each neighborhood and this point coincides with the center of the circumference.

Let Gs = (Vs,Es) be the subgraph formed by the depot and the discretization points

associated with the neighborhoods of target points in Ns, that is, Vs = {⋃v∈Ns
N̂(v)∪ v0}

and Es = {(vi, vj) : vi, vj ∈ Vs}. By solving the GTSP on Gs, we obtain the discretized tour

T̂ ∗s . By subtracting from w(T̂ ∗s ) the discretization error associated with the neighborhoods
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Figure 6 (a) Optimal Tour T ∗s of CETSP when Ns = {v1, v4, v6}. (b) Optimal Tour T ∗s of CETSP when Ns =

{v1, v2, v4, v6}.

of target points in Ns, we obtain the lower bound lb2 we were looking for (see equation

(2)).

5. Upper bound computation

In this section, we describe how to compute an upper bound of w(T ∗) by using the tour

T̂ ∗s computed in the previous section. Our strategy, named ubc, is based on the following

observation.

Observation 2. When the visiting sequence of neighborhoods is fixed a priori, the

CETSP corresponds to the Touring Steiner Zones Problem that can be formulated as a

second-order cone program (Mennell (2009)) and can be solved in polynomial time (Ander-

sen et al. (2003)).

Note that the tour T̂ ∗s defines a visiting sequence of the target points in Ns. For instance,

in Figure 5(b) the visiting order, defined by T̂s, is v1, v4, and v6.

We use the second-order cone programming model (SOCP), described by Mennell (2009)

and by Carrabs et al. (2017a), to find the optimal tour T ∗s of CETSP, according to the

visiting sequence defined by T̂ ∗s . In Figure 6(a), we depict the optimal tour T ∗s obtained with

Ns = {v1, v4, v6}. The determination of an upper bound of w(T ∗) is carried out according

to the following two cases:

Case 1. T ∗s does not intersect the neighborhoods of all target points in N.

This is the situation shown in Figure 6(a). Since the neighborhood N(v2) is not
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covered by T ∗s , this tour is not feasible for the CETSP on N . We say a target

point v is uncovered, with respect to a tour T , if and only if T does not intersect

N(v). To produce a feasible tour, at each iteration, ubc adds to Ns one uncovered

target point and it builds a new tour T ∗s by using the SOCP model on Gs. The

algorithm stops when T ∗s intersects all the neighborhoods. Since our aim is to

produce an upper bound as tight as possible, at each iteration ubc adds to Ns the

uncovered target point v having the minimum distance from an edge of the tour.

In this way, we try to minimize the cost of the new tour built on Ns.

Figure 6 shows how ubc works. Tour T ∗s , depicted in Figure 6(a), is not feasible

because it does not intersect N(v2). Therefore, the algorithm adds v2 to Ns and

it builds a new tour by using the SOCP model on the new graph composed of

neighborhoods N(v1), N(v2), N(v4), and N(v6). In Figure 6(b), we depict this new

tour T ∗s . Since this tour intersects all the neighborhoods, it is a feasible solution

and, thus, ubc stops.

Case 2. T ∗s intersects the neighborhoods of all target points in N.

In this case T ∗s is a feasible tour of CETSP on N and w(T ∗s ) is an upper bound

on w(T ∗). Since there are no uncovered targets, the algorithm stops.

6. (lb/ub)Alg algorithm

In the previous two sections, we described how to compute an upper and lower bound for

the CETSP. These two procedures are fast, but it is clear that the quality of the bounds

computed depends on several choices that we made during the computations. For instance,

the quality of the lower bounds depends on the vertices selected by FindNextPoint while

the quality of the upper bounds depends on the uncovered vertices, added to the tour to

obtain a feasible solution.

Our idea here is to develop a new algorithm ((lb/ub)Alg) that, at each iteration, i)

invokes both lbc and ubc procedures, ii) updates the values of ∆ and Γv, and iii) uses

the new values of these parameters to impact the behavior of lbc and ubc during the next

iteration. In particular, (lb/ub)Alg focuses the attention on the parameters ∆ and Γv,

used in the FindNextPoint procedure, because the values of these parameters affect the

construction of tour T ∗s and, then, the quality of the lower bound computed by lbc. On

the other hand, by providing several starting tours T ∗s to ubc, there are more chances to

improve the final upper bound.
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Figure 7 (lb/ub)Alg flowchart

Figure 7 displays the flowchart of (lb/ub)Alg. The algorithm takes as input the graph G

and it initializes ∆ to 0. The following four steps describe how the lbc procedure works.

First of all, the value of ∆ is increased by 0.1. Then, the CarouselGreedy procedure builds

the set of nodes Ns that is used to create the discretized graph Ĝs. Finally, the tour T̂ ∗s is

computed by solving the GTSP on Ĝs. As described in Section 4.1, the value of ∆ affects

the score val(v) assigned to any vertex v ∈N \Ns by FindNextPoint. In particular, when ∆

is lower than 1, val(v) is decreased, and then fewer vertices are selected by FindNextPoint.

On the other hand, when ∆ is greater than 1, val(v) is increased and more vertices can be

selected by FindNextPoint. Since it is not possible to know a priori what is the best set

Ns of vertices to select to obtain the best lower bound, we iteratively modify the ∆ value

to compute different lower bounds, among which the best one will be chosen. Since the

incremental step of ∆ is equal to 0.1, during the first 10 iterations of the algorithm fewer

points will be selected by FindNextPoint while, in later iterations, this number increases.
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In the middle of the flowchart the steps carried out to compute the upper bound are

described. Based on the sequence defined by T̂ ∗s , the new tour Ts is computed by using

the SOCP model on Gs. The sequence of “recommended” vertices R is initialized to an

empty sequence. At this point, (lb/ub)Alg checks if Ts is a feasible tour of G. There are

two possible cases that (lb/ub)Alg has to take into account.

• If Ts is infeasible, it means that there is at least one target point whose neighborhood

is not intersected by Ts. In this case, (lb/ub)Alg selects one of the uncovered vertices,

let us say v, and it adds v to the tour Ts as described in Section 5. Moreover, v is

added at the beginning of the sequence R too. Finally, the SOCP model is invoked

according to the new visitation sequence defined by Ts and, again, (lb/ub)Alg checks

to see if the new tour obtained is feasible. This loop is repeated until a feasible tour

is built.

• If Ts is feasible, (lb/ub)Alg checks to see if the stop criterion (∆≤max∆) is satisfied. If

this is the case, (lb/ub)Alg stops by returning the best upper and lower bounds found

during the procedure. Otherwise, the Γ values, associated with the target points, are

updated by newWeights procedure according to R and a new iteration of (lb/ub)Alg

starts by increasing the ∆ value by 0.1.

In our implementation, max∆ is set to 3 and, then, with an increment step of ∆ equal

to 0.1, (lb/ub)Alg carries out a total of 30 iterations. We have to describe now why we

introduced the sequence of recommended vertices R and how the procedure newWeights

updates the weights Γv. During the computation of the upper bound, carried out by ubc,

some uncovered vertices are added to the starting tour Ts to obtain a feasible solution for

CETSP on G. Let us denote by R the sequence of the uncovered vertices selected. Since

the points in R are necessary to produce a feasible solution through the SOCP model,

we use the CarouselGreedy procedure to select these points for the computation of the

next lower bound. To this end, we have to create a mechanism that increases the chances

of introducing these points in Ns. We know that the construction of Ns depends on the

FindNextPoint procedure and, in particular, on the score assigned to each point in line

5 of this procedure. Obviously, if the discretization error ξk(v), with v ∈R, is high, there

are few chances to introduce the vertex v in Ns. For this reason, we add the parameter Γv

into the computation of the score val(v). With this parameter, even a target point v with

a high discretization error value could be inserted in Ns if its Γv value is sufficiently high,
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as described in the following. The setting of Γv values is carried out by the newWeight

procedure as follows. First, newWeight sets Γv = 1 for all v ∈ N . Subsequently, to each

Γv, v ∈R, we add a weight equal to 1
posv

where posv is the position of the vertex v inside

the sequence R. For instance, if R= 〈v3, v7, v5, v12〉 then we have Γv3 = 1 + 1
1
, Γv7 = 1 + 1

2
,

Γv5 = 1 + 1
3
, Γv12 = 1 + 1

4
. Notice that the lower the position of a point v in R, the higher is

its value Γv and the higher is its probability of being inserted into Ns. We made this choice

because the first point in R corresponds to the last uncovered point whose insertion in Ts

has produced a feasible solution. However, according to the selection criterion of uncovered

vertices, used by ubc, v is the point of R furthest from the tour Ts generated at the first step

of the ubc procedure by invoking SOCP (Gs, T̂
∗
s ). As a consequence, by using this point to

compute T̂ ∗s , in lbc, the increment of w(T̂ ∗s ) should be higher than the increment obtained

with the other points in R. Obviously, the same reasoning holds between the point in the

second position of R, and the points in the next position, and so on.

In conclusion, the Γv parameter allows CarouselGreedy to recommend some vertices that

might be useful to improve the quality of the lower bound.

7. Computational Tests

In this section, we describe the results of (lb/ub)Alg algorithm obtained during our compu-

tational test phase. Our algorithm was coded in Java while the mathematical formulations

were implemented and solved using the IBM ILOG CPLEX 12.6.1 solver. All tests were

performed in single thread mode on a machine with an Intel i5 processor running at 2.3

GHz and 8 GB of RAM.

The computational tests are carried out on 842 instances divided into three sets. The first

set of 720 instances has 6, 8, 10, 12, 14, 16, 18, or 20 customers and three customer radius

values: 0.25, 0.50, and 1.00. There are 30 instances for each combination of the number

of customers and the radius of customers. This set was proposed by Behdani and Smith

(2014). The second set of 60 instances has 25 or 30 customers and the same three customer

radius values. There are 10 instances for each combination of the number of customers

and the radius of customers. This last set was proposed by Carrabs et al. (2017b). In the

following, we will refer to these two sets of instances as the “CETSP” instances. All the

CETSP instances have been solved optimally by Coutinho et al. (2016). The third set has

62 instances with 100 to 1001 customers and it was proposed by Mennell (2009). These

instances are divided into the following three groups:
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• To the first group belong the 27 instances whose names start with team, rotatingDia-

monds, bubbles, concentricCircles plus the instances bonus1000 and chaoSigleDep. In

these instances, all the target points have the same radius size while the overlap ratios

are different but they are not specified.

• The second group contains the 21 instances named d493, dsj1000, kroD100, lin318,

pcb442, rat195, and rd400 that are derived from the TSPLIB. These instances have

three fixed-radius scenarios, low overlap ratio (0.02), medium overlap ratio (0.1), and

high overlap ratio (0.3).

• The last group of 14 instances is divided in two subgroups named Team Random

Radius Problems and TSPLIB Random Radius Problems. In these instances, the size of

the radii is chosen in a random way but assuring that ri 6= rj, ∀i, j ∈N . To distinguish

these instances from the other two groups, the suffix “rdmRad” is introduced in their

names.

7.1. Upper Bound Comparisons

In this section, we verify the effectiveness and the performance of (lb/ub)Alg algorithm

by comparing it with the best heuristics proposed by Mennell (2009), the Steiner Zone

Variable Neighborhood Search heuristic (SZVNS) proposed by Wang et al. (2019) and the

branch and bound algorithm introduced by Coutinho et al. (2016). We start by comparing

the solutions of (lb/ub)Alg with the optimal solutions provided by branch and bound. This

last algorithm runs for at most 4 hours and, within this time limit, it finds the optimal

solution for all the instances of the first two sets.

In Table 1 we evaluate the effectiveness of (lb/ub)Alg and SZVNS algorithms by com-

paring their solutions with the optimal ones. Each row of the table contains average values

computed on a test scenario, composed by 30 instances for CETSP-06,...,CETSP-20 and

10 instances for CETSP-25 and CETSP-30. Under the Instance heading, we report the

scenario name while the next eight columns report the number of optimal solution found

(#Opt), the average gap from the optimal solution (AvgGap), the maximum gap from the

optimal solution (MaxGap), and the average computational time, in seconds (AvgTime),

of the (lb/ub)Alg and SZVNS algorithms, respectively. The gap values are computed by

using the formula: 100× Alg−Opt
Opt

. In each row, the best #Opt value is reported in bold. The

results of Table 1 highlight the effectiveness of (lb/ub)Alg on the CETSP instances. Indeed,

by adding the #Opt values, we find out that (lb/ub)Alg finds the optimal solution on 772
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(lb/ub)Alg SZVNS

Instance #Opt AvgGap(%) MaxGap(%) AvgTime #Opt AvgGap(%) MaxGap(%) AvgTime

r=0.25

CETSP-06 30 0.00 0.00 0.12 30 0.00 0.00 0.04

CETSP-08 30 0.00 0.00 0.17 30 0.00 0.00 0.04

CETSP-10 30 0.00 0.00 0.38 30 0.00 0.00 0.05

CETSP-12 30 0.00 0.00 0.65 30 0.00 0.00 0.07

CETSP-14 29 0.00 0.04 0.71 27 0.02 0.34 0.07

CETSP-16 30 0.00 0.00 1.31 27 0.07 0.86 0.09

CETSP-18 30 0.00 0.00 1.54 29 0.01 0.20 0.10

CETSP-20 30 0.00 0.00 2.54 29 0.00 0.07 0.14

CETSP-25 10 0.00 0.00 7.27 7 0.18 0.84 0.24

CETSP-30 9 0.01 0.06 17.05 6 0.41 1.74 0.41

r=0.50

CETSP-06 29 0.01 0.19 0.16 29 0.00 0.02 0.04

CETSP-08 30 0.00 0.00 0.35 29 0.00 0.01 0.04

CETSP-10 30 0.00 0.00 0.86 28 0.01 0.18 0.06

CETSP-12 30 0.00 0.00 1.67 29 0.00 0.08 0.07

CETSP-14 30 0.00 0.00 2.03 28 0.03 0.90 0.07

CETSP-16 30 0.00 0.00 3.43 27 0.08 1.10 0.10

CETSP-18 29 0.00 0.01 4.63 29 0.00 0.08 0.11

CETSP-20 30 0.00 0.00 6.07 28 0.01 0.32 0.15

CETSP-25 9 0.00 0.00 11.49 8 0.23 1.54 0.25

CETSP-30 9 0.06 0.57 20.30 8 0.02 0.19 0.33

r=1.00

CETSP-06 30 0.00 0.00 0.25 29 0.00 0.12 0.04

CETSP-08 30 0.00 0.00 0.73 30 0.00 0.00 0.05

CETSP-10 30 0.00 0.00 1.79 28 0.00 0.08 0.06

CETSP-12 30 0.00 0.00 3.03 28 0.03 0.89 0.07

CETSP-14 30 0.00 0.00 5.16 27 0.01 0.24 0.08

CETSP-16 30 0.00 0.00 5.67 28 0.01 0.15 0.10

CETSP-18 29 0.00 0.01 8.22 28 0.02 0.65 0.11

CETSP-20 29 0.00 0.05 8.33 23 0.03 0.32 0.14

CETSP-25 10 0.00 0.00 20.48 9 0.00 0.01 0.23

CETSP-30 10 0.00 0.00 18.36 9 0.04 0.44 0.32

Table 1 Comparison between the optimal solutions and the solutions found by (lb/ub)Alg on the CETSP

instances.

out of 780 instances with an average gap that is always lower than 0.07%. On the contrary,

SZVNS finds the optimal solution on 727 out of 780 instances and its average gap value is

always lower than 0.42%. Moreover, the MaxGap values show that the solutions found by

(lb/ub)Alg are very close to the optimal ones; excluding the worst case with 0.57%, on the

remaining cases, this gap is always lower than 0.2%. In contrast, the MaxGap values of
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Instance Size Opt (lb/ub)Alg Gap(%)

Varied overlap ratios

bubbles1 37 349.14 349.14 0.00

bubbles2 77 428.28 428.28 0.00

bubbles3 127 529.96 529.96 0.00

concentricCircles1 17 53.16 53.16 0.00

rotatingDiamonds1 21 32.39 32.39 0.00

rotatingDiamonds2 61 140.48 140.48 0.00

Team1 100 101 307.34 307.34 0.00

Team2 200 201 246.68 246.68 0.00

Team6 500 501 225.22 225.22 0.00

Overlap ratios (0.1)

d493 493 100.72 100.72 0.00

kroD100 100 89.67 89.67 0.00

lin318 318 1394.63 1405.07 0.75

rat195 195 67.99 68.14 0.22

Overlap ratios (0.3)

d493 493 69.76 69.79 0.05

dsj1000 1000 199.95 199.95 0.00

kroD100 100 58.54 58.54 0.00

lin318 318 765.96 765.96 0.00

pcb442 442 83.54 83.54 0.00

rat195 195 45.70 45.70 0.00

rd400 400 224.84 224.84 0.00

Arbitrary radius

rat195rdmRad 195 68.22 68.22 0.00

team1 100rdmRad 101 388.54 388.54 0.00

team3 300rdmRad 301 378.09 378.51 0.11

Avg 0.05

Table 2 Comparison between the optimal solutions and the solutions found by (lb/ub)Alg.

SZVNS are higher than 1.0% three times (1.74% in the worst case) and higher than 0.2%

thirteen times. Regarding the computational time, SZVNS is extremely fast; it requires no

more than a second. (lb/ub)Alg is always slower than SZVNS, but it never requires more

than 21 seconds and its computational time is around 5 seconds, on average. Summarizing,

on the CETSP instances, (lb/ub)Alg finds the optimal solution in 98.9% of the instances

and, on the remaining instances, the average gap from the optimal solution is always lower

than 0.07%.
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To further investigate the effectiveness of (lb/ub)Alg, we compare its solutions with the

optimal solutions provided by Coutinho et al. (2016) using branch and bound on the

third set of instances. However, due to the size of these instances, the branch and bound

approach finds the optimal solution only on the subset of 23 instances included in Table 2.

Under the Instance and Size headings, we report the instance name and the instance size,

respectively, while the next two columns report the optimal solution value (Opt) and the

solution value ((lb/ub)Alg) found by our algorithm, respectively. Finally, under the GAP

heading, we report the percentage gap between the solution values. This gap is computed

by using the formula: 100 × (lb/ub)Alg −Opt
Opt

. Finally, the last line of the table reports the

average values of the GAP column. The solution values of (lb/ub)Alg are in bold whenever

they coincide with the optimal solution values.

The results under the GAP heading show that (lb/ub)Alg is very effective because it

finds the optimal solution on 19 out of 23 instances with an average percentage gap equal

to 0.05%. On the remaining four instances, the gap from the optimal solution is at most

equal to 0.75%.

The computational time of (lb/ub)Alg will be analyzed, in detail, in later tables. However,

we want to highlight here that all the instances mentioned in Table 2 are solved in less than

200 seconds and, in the 80% of the cases, the time is less than 120 seconds. These results

show the capacity of (lb/ub)Alg to quickly find the optimal solution on most instances of

this subset.

In Table 3 we compare the solutions found by (lb/ub)Alg with the ones found by SZVNS

(Wang et al. (2019)) and by the best heuristics proposed by Mennell (2009), on the

instances with a fixed radius. In the first column the identification number (id) associated

to each instance is shown while in the second column (Instance) the name of the instance is

provided. The next eight columns report the solution values of (lb/ub)Alg, SZV NS, HA,

SZ30−360, SZ350−59, SZ3, SZ20−360, and GTSP2 heuristics, respectively. At the bottom,

#best shows how many times each algorithm finds the best solution while #U.best reports

how many times the algorithm is the only one to find the best solution. GAP reports the

average percentage gap from the best solution value while S.DEV reports the standard

deviation value. For each row, the best value is marked in bold.

The results of line #best show that (lb/ub)Alg is the most effective algorithm because it

finds the best solution on 26 out of 48 instances. The #best value for the other heuristics
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id Instance Size (lb/ub)Alg SZVNS HA SZ30−360 SZ350−59 SZ3 SZ20−360 GTSP2

Varied overlap ratios

1 bonus1000 1001 387.13 403.06 408.44 404.01 408.39 414.42 416.82 578.87

2 bubbles1 37 349.13 349.14 349.14 349.13 349.13 349.13 349.13 349.13

3 bubbles2 77 428.28 428.28 428.28 428.28 428.28 428.28 428.28 432.38

4 bubbles3 127 529.96 532.21 532.28 536.62 536.62 548.89 564.04 546.73

5 bubbles4 185 805.56 825.33 832.27 836.54 842.73 836.54 844.35 877.47

6 bubbles5 251 1061.64 1073.43 1067.96 1073.71 1073.71 1095.24 1106.41 1131.09

7 bubbles6 325 1313.02 1263.68 1394.14 1382.41 1383.14 1404.16 1446.39 1446.26

8 bubbles7 407 1650.04 1639.33 1735.38 1720.21 1736.75 1720.21 1806.89 1775.92

9 bubbles8 497 2021.27 1972.99 2120.98 2117.49 2129.52 2158.78 2197.88 2236.40

10 bubbles9 595 2413.31 2330.31 2456.27 2481.23 2481.23 2550.53 2586.72 2748.93

11 chaoSingleDep 201 1039.61 1039.63 1042.82 1022.88 1022.88 1022.88 1022.88 1039.61

12 concentricCircles1 17 53.16 53.16 53.16 53.16 53.40 53.40 53.16 53.16

13 concentricCircles2 37 154.81 154.88 153.13 159.49 160.00 160.00 159.99 153.13

14 concentricCircles3 61 272.69 272.49 271.08 272.89 272.89 272.89 273.41 271.08

15 concentricCircles4 105 466.52 461.36 455.62 472.79 475.96 475.96 472.88 454.46

16 concentricCircles5 149 659.36 647.84 647.64 654.94 664.09 664.09 656.38 645.38

17 rotatingDiamonds1 21 32.39 32.39 32.39 32.39 32.39 33.15 32.39 32.39

18 rotatingDiamonds2 61 140.48 140.48 140.48 140.48 140.48 140.48 140.48 140.48

19 rotatingDiamonds3 181 380.89 380.89 382.50 381.27 381.48 381.48 382.05 382.17

20 rotatingDiamonds4 321 772.00 770.68 777.05 770.76 770.76 771.36 771.31 773.21

21 rotatingDiamonds5 681 1531.74 1510.88 1530.31 1511.44 1511.50 1511.50 1511.44 1517.70

22 Team1 100 101 307.34 307.34 307.34 307.34 307.34 308.73 309.18 307.79

23 Team2 200 201 246.68 246.69 247.48 246.74 246.84 250.55 247.57 249.92

24 Team3 300 301 476.43 465.80 466.12 466.24 478.28 468.65 483.26 484.70

25 Team4 400 401 702.69 698.05 686.76 688.63 698.42 688.63 711.93 680.21

26 Team5 499 500 708.45 703.38 711.14 702.82 704.48 710.02 715.99 703.20

27 Team6 500 501 225.22 226.18 227.50 225.22 225.23 225.92 225.88 355.02

Overlap ratios (0.02)

28 d493 493 205.39 205.74 203.84 203.47 205.66 207.44 207.82 204.71

29 dsj1000 1000 955.57 943.83 949.37 943.44 943.44 965.52 977.73 935.74

30 kroD100 100 160.09 159.04 159.05 160.81 160.81 160.96 162.17 159.05

31 lin318 318 2902.53 2842.32 2883.17 2863.37 2873.10 2872.37 2905.53 2867.46

32 pcb442 442 337.51 325.02 325.05 325.63 331.87 328.08 330.27 323.03

33 rat195 195 166.51 160.06 158.79 164.47 164.47 167.57 166.41 158.79

34 rd400 400 1085.75 1039.77 1041.77 1039.73 1043.58 1051.70 1050.42 1033.42

Overlap ratios (0.1)

35 d493 493 100.72 102.92 101.75 101.73 101.85 104.16 103.42 112.55

36 dsj1000 1000 374.06 393.06 380.59 377.10 376.35 379.97 385.74 482.85

37 kroD100 100 89.67 89.92 89.67 89.67 89.90 90.88 90.97 89.94

38 lin318 318 1405.07 1414.66 1410.25 1414.44 1425.05 1444.53 1441.99 1467.02

39 pcb442 442 146.03 152.73 148.74 148.88 151.26 152.98 153.55 147.24

40 rat195 195 68.14 68.32 68.24 68.26 68.85 69.48 69.77 68.26

41 rd400 400 460.21 474.78 469.19 469.75 482.28 500.42 498.52 473.70

Overlap ratios (0.3)

42 d493 493 69.79 69.90 70.40 69.76 69.76 69.76 69.76 82.83

43 dsj1000 1000 199.95 203.07 202.94 199.95 199.95 199.95 199.95 459.22

44 kroD100 100 58.54 58.54 59.03 58.54 58.54 58.54 58.54 62.15

45 lin318 318 765.96 766.16 770.08 765.96 765.96 765.96 765.96 946.67

46 pcb442 442 83.54 83.80 84.02 83.54 83.54 83.54 83.54 126.21

47 rat195 195 45.70 45.70 45.80 45.70 45.70 45.70 45.70 48.19

48 rd400 400 224.84 224.98 226.09 224.84 224.84 224.84 224.84 348.99

#best 26 17 9 18 13 11 13 13

#U.best 11 9 – 2 – – – 6

GAP 0.98% 0.81% 1.34% 1.35% 1.78% 2.39% 2.89% 11.04%

S.DEV 1.48% 1.26% 2.13% 2.17% 2.37% 2.85% 3.51% 23.21%

Table 3 Comparison of the upper bound values on the instances with a fixed radius.
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is much lower; SZV NS and SZ30−360 have values of 17 and 18, respectively. Moreover, the

highest #U.best value is, again, associated with (lb/ub)Alg. In eleven instances, (lb/ub)Alg

is the only algorithm to find the best solution. SZV NS and GTSP2 have values of 9 and

6, respectively, in this row of Table 3. The other algorithms are not competitive.

With respect to the GAP row, SZV NS and (lb/ub)Alg are the only algorithms to have

average gaps of less than 1%. In the final row, we see that SZV NS and (lb/ub)Alg are

the only algorithms to have standard deviations of less than 1.5%. Clearly, SZV NS and

(lb/ub)Alg are the best performing of the eight algorithms.

It is worth noting that the overlap ratio of the instances has a major impact on the

effectiveness of (lb/ub)Alg and SZV NS. Based on the logic of (lb/ub)Alg, we expect that, as

the overlap ratio increases, the effectiveness of (lb/ub)Alg will improve, and this is exactly

what happens. When we compare (lb/ub)Alg and SZV NS on the seven instances with an

overlap ratio of 0.02, we observe that SZV NS obtains a better solution in six of these cases.

However, on the instances with overlap ratios of 0.1 and 0.3, (lb/ub)Alg obtains better

solutions than SZV NS in 12 of 14 instances (with two ties). It is interesting to observe that

the SZ heuristics of Mennell (2009) are particularly effective on the instances with overlap

ratio equal to 0.3 where they always find the best solution. Over the 27 instances with

varied overlap ratios, (lb/ub)Alg outperforms SZV NS in 15 cases. These results nicely

demonstrate that the choice of which algorithm to use ((lb/ub)Alg or SZV NS) strongly

depends on the overlap ratio of the specific instance being studied.

The computational times of the algorithms are reported in Table 4. For each row, the

computational time of the fastest algorithm is marked in bold. The bottom row displays

the average computation time of each heuristic on the instances with a fixed radius. For

the two best performing heuristics from Table 3, we observe that SZV NS has an average

time of about 90 seconds, whereas (lb/ub)Alg has an average time of 200 seconds. SZ350−59

and SZ3 are faster than (lb/ub)Alg but have percentage gaps (from optimality) greater

than that of (lb/ub)Alg. The remaining heuristics have average running times at least

twice as large as for (lb/ub)Alg. SZ30−360 and GTSP2 have average running times that

are excessive.

It is interesting to observe how the running times of (lb/ub)Alg change as a function of

the overlap ratio. In general, as this ratio increases, running times decrease. On instance

28-34, with an overlap ratio of 0.02, the running times range from 167 to 998 seconds. On
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id Instance Size (lb/ub)Alg SZVNS HA SZ30−360 SZ350−59 SZ3 SZ20−360 GTSP2

Varied overlap ratios

1 bonus1000 1001 116.63 1109.87 1508.10 29067.30 807.43 82.58 2885.86 2648762.00

2 bubbles1 37 11.42 0.24 55.40 226.03 6.28 0.45 44.93 95.00

3 bubbles2 77 22.68 1.09 97.50 733.22 20.37 4.30 136.24 64.00

4 bubbles3 127 130.17 2.51 146.20 2121.30 58.93 20.41 359.55 471.00

5 bubbles4 185 130.11 9.53 202.90 2885.31 80.15 28.16 462.21 23414.00

6 bubbles5 251 116.63 37.37 234.90 4435.84 123.22 21.24 486.77 6085.00

7 bubbles6 325 217.20 14.00 284.90 5439.70 151.10 24.96 617.77 24657.00

8 bubbles7 407 304.46 50.29 521.00 8814.55 244.85 36.61 1452.30 34295.00

9 bubbles8 497 416.30 110.30 412.50 12151.05 337.53 55.41 2009.94 100462.00

10 bubbles9 595 296.14 168.18 415.50 17111.39 475.32 69.10 2788.71 304348.00

11 chaoSingleDep 201 89.69 12.67 201.40 2503.34 69.54 5.42 290.08 43743.00

12 concentricCircles1 17 6.43 0.10 18.50 130.08 3.61 0.36 24.29 123.00

13 concentricCircles2 37 51.96 0.27 40.10 235.16 6.53 0.65 51.72 169.00

14 concentricCircles3 61 362.24 1.28 57.60 451.66 12.55 2.16 71.44 372.00

15 concentricCircles4 105 96.86 5.82 105.70 752.92 20.92 2.05 122.30 4468.00

16 concentricCircles5 149 351.21 10.06 141.20 1163.94 32.33 3.20 218.90 22031.00

17 rotatingDiamonds1 21 7.06 0.12 16.60 166.98 4.64 0.49 17.65 24.00

18 rotatingDiamonds2 61 176.13 0.54 58.90 508.92 14.14 2.31 75.51 368.00

19 rotatingDiamonds3 181 615.47 8.81 192.10 1568.31 43.56 5.02 234.89 16407.00

20 rotatingDiamonds4 321 271.20 18.49 257.10 3064.52 85.13 9.22 570.13 49045.00

21 rotatingDiamonds5 681 210.99 53.62 765.40 10841.58 301.16 27.56 2058.39 210899.00

22 Team1 100 101 76.86 3.20 122.60 1292.77 35.91 5.83 178.45 913.00

23 Team2 200 201 36.06 16.21 336.20 2117.86 58.83 9.17 286.69 34768.00

24 Team3 300 301 56.88 31.48 366.20 3389.92 94.17 14.95 553.45 69823.00

25 Team4 400 401 120.25 43.47 474.80 5335.48 148.21 32.24 737.30 276264.00

26 Team5 499 500 828.33 88.17 447.20 7537.02 209.36 42.69 1426.78 396631.00

27 Team6 500 501 8.15 719.32 819.90 9355.44 259.87 19.44 873.53 196027.00

Overlap ratios (0.02)

28 d493 493 247.04 69.72 435.90 10061.84 279.50 35.73 1533.77 309071.00

29 dsj1000 1000 998.99 151.77 841.50 26666.84 740.75 71.27 3987.42 12682545.00

30 kroD100 100 167.14 9.34 85.10 351.25 9.76 2.22 153.41 666.00

31 lin318 318 292.90 31.17 245.00 3744.98 104.03 18.02 707.70 48545.00

32 pcb442 442 805.44 52.88 381.40 3932.38 109.23 23.72 1214.61 222047.00

33 rat195 195 569.55 11.16 162.30 742.17 20.62 4.22 304.14 7781.00

34 rd400 400 662.60 27.70 308.00 2669.81 74.16 15.25 927.03 76010.00

Overlap ratios (0.1)

35 d493 493 33.87 142.94 689.00 8217.20 228.26 22.88 992.23 61715.00

36 dsj1000 1000 83.00 356.79 1372.90 24126.11 670.17 65.02 2939.34 7807747.00

37 kroD100 100 193.44 1.99 125.30 817.63 22.71 3.20 114.58 1483.00

38 lin318 318 26.50 65.98 444.50 3895.64 108.21 17.06 474.13 60252.00

39 pcb442 442 224.95 54.99 653.00 5903.30 163.98 17.83 746.81 250485.00

40 rat195 195 95.19 9.47 269.30 1967.56 54.66 6.81 220.39 5951.00

41 rd400 400 101.27 96.98 560.80 4938.53 137.18 20.27 626.05 91003.00

Overlap ratios (0.3)

42 d493 493 2.72 58.07 983.40 9295.19 258.20 26.02 654.09 59109.00

43 dsj1000 1000 6.89 316.41 1766.60 25575.72 710.44 35.28 2042.81 2623498.00

44 kroD100 100 0.37 4.58 189.80 681.45 18.93 1.39 101.39 865.00

45 lin318 318 1.21 49.01 589.80 4334.06 120.39 6.48 349.50 40166.00

46 pcb442 442 0.58 196.54 846.70 8661.81 240.61 37.63 631.64 76137.00

47 rat195 195 0.33 19.01 371.20 5872.27 163.12 11.44 236.50 6323.00

48 rd400 400 4.19 74.86 743.90 6563.88 182.33 14.19 602.11 61120.00

AVG 200.95 89.97 424.29 6092.11 169.23 20.46 804.07 603275.98

Table 4 Computational time (in seconds) on the instances with fixed radius.
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id Instance Size (lb/ub)Alg SZVNS HA HYBRID2 HYBRID1 SZ2 SZ350−59 GTSP1

Arbitrary radius

49 bonus1000rdmRad 1001 955.41 938.27 1001.1 996.31 996.97 992.61 1015.52 1087.47

50 d493rdmRad 493 134.74 135.02 141.34 140.12 140.69 142.08 153.29 175.95

51 dsj1000rdmRad 1000 625.92 625.25 659.64 655.95 660.39 653.37 715.97 901.09

52 kroD100rdmRad 100 142.36 141.83 141.84 144.27 151.52 144.39 145 142.2

53 lin318rdmRad 318 2055.77 2082.25 2079.49 2160.85 2164.45 2175.72 2136.45 2165.26

54 pcb442rdmRad 442 220.44 221.16 234.15 235.19 237.32 243.48 237.83 267.03

55 rat195rdmRad 195 68.22 68.22 68.22 68.81 68.84 68.66 68.27 129.71

56 rd400rdmRad 400 1305.46 1257.73 1252.22 1252.38 1260.77 1276.08 1270.04 1258.15

57 team1 100rdmRad 101 388.54 388.54 390.23 390.34 390.78 390.95 389.1 392.55

58 team2 200rdmRad 201 616.82 626.9 624.79 642.81 643.12 655.81 644.57 627.45

59 team3 300rdmRad 301 378.51 379.84 382.16 399.39 400.02 396.61 381.83 496.78

60 team4 400rdmRad 401 1025.76 1006.71 1020.16 1026.32 1028.89 1025.83 1011.77 1016

61 team5 499rdmRad 500 446.51 446.19 458.35 456.39 457.88 455.61 476.19 631.27

62 team6 500rdmRad 501 626.18 621.99 672.36 666.15 666.64 678.03 679.67 755.79

#best 7 8 2 – – – – –

#U.best 5 6 1 – – – – –

GAP 0.66% 0.30% 2.81% 3.64% 4.30% 4.37% 5.29% 21.85%

S.DEV 1.23% 0.52% 2.86% 2.40% 2.48% 3.03% 4.91% 25.14%

Table 5 Comparison of the upper bound values on the instances with an arbitrary radius.

instances 35-41, with an overlap ratio of 0.1, running times range from 33 to 224 seconds.

On average, the instances with an overlap ratio of 0.02 take nearly five times as long to

solve as the instances with an overlap ratio of 0.1. Finally, on the instances with an overlap

ratio of 0.3, the running times of (lb/ub)Alg are very small – no more than 7 seconds.

When we look at the varied overlap ratio instances, (lb/ub)Alg ’s running times range from

a few seconds to 828 seconds. In only two of the 27 instances do running times exceed

420 seconds. In comparing the running times of (lb/ub)Alg and SZV NS, we observe that

(lb/ub)Alg is always faster than SZV NS on the instances with overlap ratio 0.3 and it is

always slower on the instances with overlap ratio 0.02. It, therefore, seems that (lb/ub)Alg

is the preferred heuristic on instances with a higher overlap ratio, whereas SZV NS is

better for a lower overlap ratio.

The computational results on the instances with arbitrary radius are reported in Table 5.

The comparison is carried out between (lb/ub)Alg, SZV NS, and the best heuristics pro-

posed by Mennell (2009). Some of these are different from the algorithms compared in

Table 3 because we selected the heuristics of Mennell (2009) having the best overall gap
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id Instance Size (lb/ub)Alg SZVNS HA HYBRID2 HYBRID1 SZ2 SZ350−59 GTSP1

Arbitrary radius

49 bonus1000rdmRad 1001 728.55 3.93 1043.70 2080.28 1759.89 41.20 113452.34 10101278.00

50 d493rdmRad 493 95.34 0.26 770.70 46.22 20.88 7.42 25737.78 484757.00

51 dsj1000rdmRad 1000 286.23 2.73 1594.60 234.14 150.89 24.58 196446.44 8819121.00

52 kroD100rdmRad 100 46.25 87.16 110.70 86.61 83.89 4.27 295.91 1006.00

53 lin318rdmRad 318 59.52 3.18 483.00 204.72 191.41 8.81 9896.97 193723.00

54 pcb442rdmRad 442 153.38 1.36 620.80 1160.75 770.03 73.28 13067.88 492575.00

55 rat195rdmRad 195 9.97 10.57 427.10 44.59 38.63 8.00 1655.23 9213.00

56 rd400rdmRad 400 1110.35 0.67 277.30 12795.41 9499.78 57.25 2573.50 350351.00

57 team1 100rdmRad 101 20.80 3.89 129.70 51.00 43.36 9.30 403.59 413.00

58 team2 200rdmRad 201 209.44 0.93 211.80 350.84 341.20 6.92 1300.39 7448.00

59 team3 300rdmRad 301 16.65 34.51 488.00 56.39 48.06 5.00 7949.72 27571.00

60 team4 400rdmRad 401 658.03 2.62 348.50 1794.55 1514.84 22.20 5175.19 574193.00

61 team5 499rdmRad 500 51.43 5.05 874.90 52.19 35.91 124.42 38920.25 811557.00

62 team6 500rdmRad 501 347.08 19.77 701.20 244.80 212.84 11.47 20166.17 535527.00

AVG 270.93 12.62 577.29 1371.61 1050.83 28.87 31217.24 1600623.79

Table 6 Computational time (in seconds) on the instances with arbitrary radius.

according to the instances reported in each table. The last four rows of this table and

Table 3 are similar. For each row, the best value is marked in bold.

Table 5 reveals that both (lb/ub)Alg and SZV NS are very effective. They find the

best solutions in 7 and 8 out of 14 instances. The number of unique solutions found by

(lb/ub)Alg and SZV NS is 5 and 6, respectively. The best average gaps are achieved by

SZV NS (0.30%) and (lb/ub)Alg (0.66%). The lowest standard deviations are also achieved

by SZV NS (0.52%) and (lb/ub)Alg (1.23%). The other algorithms represented in this

table are not competitive.

The computational times of the heuristics from Table 5 are shown in Table 6. For each

row, the computational time of the fastest algorithm is marked in bold. The fastest algo-

rithm is SZV NS with an average running time of 12 seconds, followed by SZ2 with an

average of 28 seconds. The average time of (lb/ub)Alg is 270 seconds, while HA requires

577 seconds, on average. The remaining heuristics require more than 1000 seconds, on

average.

7.2. Lower Bound Comparisons

In this section, we evaluate the quality of the lower bounds computed by (lb/ub)Alg. Since

no additional computational effort is required by (lb/ub)Alg, the running times are the

same as shown in Tables 4 and 6.
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(lb/ub)Alg BB

id Instance Size LB Time LB Time

Varied overlap ratios

1 bonus1000 1001 285.32 116.63 359.38 14400.02

2 bubbles1 37 323.55 11.42 349.14 0.1

3 bubbles2 77 391.64 22.68 428.28 0.22

4 bubbles3 127 476.75 130.17 529.96 193.12

5 bubbles4 185 561.98 130.11 690.58 14400.01

6 bubbles5 251 658.52 116.63 851.82 14400.28

7 bubbles6 325 766.44 217.2 993.98 14400.15

8 bubbles7 407 866.14 304.46 1123.52 14400.19

9 bubbles8 497 965.7 416.3 1252.72 14400.28

10 bubbles9 595 1073.1 296.14 1374.41 14400.33

11 chaoSingleDep 201 831.06 89.69 1000.15 14400.09

12 concentricCircles1 17 45.84 6.43 53.16 5.18

13 concentricCircles2 37 114.56 51.96 149.87 14400.03

14 concentricCircles3 61 191.5 362.24 247.62 14400.18

15 concentricCircles4 105 289.36 96.86 358.89 14400.06

16 concentricCircles5 149 392.89 351.21 459.41 14400.16

17 rotatingDiamonds1 21 30.73 7.06 32.39 0.09

18 rotatingDiamonds2 61 111.44 176.13 140.48 730.37

19 rotatingDiamonds3 181 272.76 615.47 348.61 14400.07

20 rotatingDiamonds4 321 527.85 271.2 593.35 14400.03

21 rotatingDiamonds5 681 1098.37 210.99 1106.58 14400.23

22 Team1 100 101 270.49 76.86 307.34 9.61

23 Team2 200 201 232.87 36.06 246.68 0.72

24 Team3 300 301 330.92 56.88 447.53 14400.03

25 Team4 400 401 391.45 120.25 507.3 14400.1

26 Team5 499 500 481.49 828.33 524.59 14400.05

27 Team6 500 501 217.74 8.15 225.22 0.43

GAP1 15.80% 0.00%

Overlap ratios (0.02)

28 d493 493 129.05 247.04 146.33 14400.17

29 dsj1000 1000 521.52 998.99 559.11 14400.24

30 kroD100 100 118.64 167.14 142.87 14400.16

31 lin318 318 1830.97 292.9 1990.9 14400.08

32 pcb442 442 177.36 805.44 185.85 14400.03

33 rat195 195 93.72 569.55 108.1 14400.04

34 rd400 400 609.79 662.6 567.19 14440.27

GAP2 8.77% 1.00%

Overlap ratios (0.1)

35 d493 493 91.9 33.87 100.72 53.28

36 dsj1000 1000 317.33 83 373.73 14400.51

37 kroD100 100 85.39 193.44 89.67 1.86

38 lin318 318 1139.23 26.5 1394.63 8541.19

39 pcb442 442 110.99 224.95 137.45 14400.09

40 rat195 195 65.41 95.19 67.99 17.32

41 rd400 400 329.82 101.27 432.8 14400.03

GAP3 13.40% 0.00%

Overlap ratios (0.3)

42 d493 493 68.64 2.72 69.76 0.32

43 dsj1000 1000 193.5 6.89 199.95 0.75

44 kroD100 100 56.89 0.37 58.54 0.07

45 lin318 318 754.21 1.21 765.96 0.24

46 pcb442 442 81.88 0.58 83.54 0.31

47 rat195 195 44.51 0.33 45.7 0.13

48 rd400 400 219.29 4.19 224.84 0.33

GAP4 2.83% 0.00%

Overall GAP 12.53% 0.15%

Table 7 Comparison of the lower bound values on the instances with a fixed radius.
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In Table 7, we report the lower bounds computed by (lb/ub)Alg, and the branch and

bound (BB) method proposed by Coutinho et al. (2016). The first two columns show the

id and instance name. The next four columns show the lower bound (LB) and running

time (in seconds) for (lb/ub)Alg and BB, respectively. For each row, the best lower bound

is marked in bold. In the last row of the table, the average gap percentage (GAP) between

the best lower bound and the lower bound computed by the algorithm is presented. It is

quite clear that the best lower bounds are, almost always, computed by BB. However, it is

often the case that BB requires 14400 seconds (its time limit) to obtain these results. The

GAP value of (lb/ub)Alg is significantly higher that for BB (12.53% vs 0.15%), but the

required running times for (lb/ub)Alg are much smaller. For this reason, the lower bound

computed by (lb/ub)Alg, even if less effective, could be used within a branch-and-bound

approach to reduce the size of the search tree; BB requires too much computational effort

to be used in this context.

Along these lines, we carried out some additional experiments to examine the effective-

ness of (lb/ub)Alg as a function of the number of iterations (this number was set to 30 in

Section 6). If we use a single iteration rather than 30, (lb/ub)Alg produces an overall GAP

value of 14.82% with running times that are always less than 3 seconds. This represents

a large reduction in running time for a slight deterioration in lower bound quality. This

observation makes the idea of applying (lb/ub)Alg within a branch-and-bound algorithm

very attractive.

In analyzing the results of Table 7, we observe that the worst results for (lb/ub)Alg are

obtained on the instances with varied overlap ratio (see GAP1). We observe a reduction in

the average gap as the overlap ratio increases, but this is not strict (e.g., see GAP3). When

the overlap ratio is equal to 0.3, the average gap is only 2.83%. The situation changes

dramatically on the instances with an arbitrary radius, as illustrated in Table 8.

There are 14 instances compared in Table 8. Here, the lower bounds obtained by

(lb/ub)Alg are better, on average, than the lower bounds found by BB (4.12% vs. 7.24%).

On some instances, BB performs very poorly. In addition, (lb/ub)Alg is much faster. These

key observations are probably connected. We assume that the disappointing results of BB

are due to the fact that instances with arbitrary radius are more difficult for the BB algo-

rithm to solve, as evidenced by the running times (which often reach the time limit of

14400 seconds). On the other hand, (lb/ub)Alg never requires more than 1110 seconds. In

11 of the 14 instances, running times for (lb/ub)Alg are under 350 seconds.



Carrabs et al.: An Adaptive Heuristic Approach to Compute Upper and Lower Bounds for the CETSP
30 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

(lb/ub)Alg BB

id Instance Size LB Time LB Time

Arbitrary radius

49 bonus1000rdmRad 1001 700.54 728.55 506.13 14400.22

50 d493rdmRad 493 116.57 95.34 125.31 14400.14

51 dsj1000rdmRad 1000 545.38 286.23 509.74 14400.3

52 kroD100rdmRad 100 119.46 46.25 136.62 14400.12

53 lin318rdmRad 318 1719.54 59.52 1807.68 14400

54 pcb442rdmRad 442 181.21 153.38 175.83 14400.23

55 rat195rdmRad 195 65.12 9.97 68.22 5.16

56 rd400rdmRad 400 880.91 1110.35 571.48 14400.29

57 team1 100rdmRad 101 350.78 20.8 388.54 269.31

58 team2 200rdmRad 201 482.1 209.44 488.18 14400.12

59 team3 300rdmRad 301 342.65 16.65 378.09 682.39

60 team4 400rdmRad 401 737.16 658.03 549.91 14400.32

61 team5 499rdmRad 500 405.46 51.43 442.64 14400.36

62 team6 500rdmRad 501 507.43 347.08 489.61 14400.08

GAP 4.12% 7.24%

Table 8 Comparison of the lower bound values on the instances with an arbitrary radius.

8. Conclusions

In this paper, we developed a new metaheuristic approach, (lb/ub)Alg, to solve the Close-

Enough Traveling Salesman Problem; the method computes both upper and lower bounds

for the CETSP. It works by discretizing neighborhoods around target points in order to

minimize the total discretization error. The Carousel Greedy algorithm is used to select and

to add, one by one, neighborhoods to the current partial solution until a feasible solution

is obtained. We tested the performance of (lb/ub)Alg on the key benchmark instances with

respect to accuracy and running time. The computational results show that (lb/ub)Alg finds

the optimal solution in 98.9% of the CETSP instances and, on the remaining instances, the

average gap from the optimal solution is almost always lower than 0.07%. On Mennell’s

instances, where the optimal solution is known, (lb/ub)Alg obtains this solution in 83% of

the cases and, in the remaining cases, the deviation from optimality is 0.28%, on average.

On the instances with the highest overlap ratio, (lb/ub)Alg is the fastest algorithm and, in

all cases except one, it finds the best solution. When the overlap ratio is small, SZV NS is

better and faster than (lb/ub)Alg. Finally, on the instances with arbitrary radius, (lb/ub)Alg

finds better lower bounds than the branch and bound approach in much less time.
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`(vi, vj) Euclidean distance between vi and vj
Cv Circumference with center v and radius rv associated with target point v

a, b Chord between the points a and b of circumference

â, b Circular arc from a to b in the clockwise direction
Nv Set of point within and on Cv

N̂v Discretized neighborhood of N(v)
T ∗ Shortest tour intersecting every neighborhood N(v)

T̂ ∗ shortest tour intersecting every neighborhood N̂(v)
w(T ) cost of tour T . It is given by the sum of the edge lengths in T

ξ(v) Discretization error occurring on N̂(v)

ξk(v) Discretization error occurring on N̂(v) by using k discretization points
lbc Lower bound value computed by (lb/ub)Alg
ubc Upper bound value computed by (lb/ub)Alg
Ns Subset of target points selected by the lbc procedure

Ĝs Subgraphs induced by discretization points used to discretize the neighborhoods of Ns

T̂ ∗s Shortest tour of Ĝs

nMax total number of available discretization points
val(v) Score assigned to the vertex v by the FindNextPoint procedure
µ Weighted average computed by FindNextPoint and used to compute val(v)
∆ Parameter used to increase or decrease the µ in the computation of val(v)
Γv “Recommendation value” associated with each vertex v.

It influences the selection of vertices carried out by FindNextPoint
k estimate of the number of discretization points used to discretize a neighborhood.
R The sequence of “recommended” vertices used by (lb/ub)Alg denoted by 〈v1, v2, . . . , vm〉
max∆ (lb/ub)Alg stops when ∆>max∆
posv position of the vertex v in the sequence R

Table 9 Glossary of the terms used in the paper.
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Appendix

In this section, we describe how the lower bound lb1 is derived. Let us consider the example in Figure 8

where N = {v1, v2, v3} and T ∗ is the optimal tour for the CETSP, identified by the turn points p1, p2, p3 and

the depot p0. Note that the turn points of T ∗ are always on the boundary of the spheres (see Proposition

1 in Behdani and Smith (2014)). Each neighborhood is discretized by using only k= 2 discretization points

placed on the corresponding circumference.

Let us build now the walk Q= {p0, p1, d1, p1, p2, d2, p2, p3, p0}. In practice, Q is built by following the edges

of T ∗ and, for each turn point pi ∈Cvi , the closest discretization point di ∈ N̂(vi) is detected and the chord

pi, di is crossed twice. The discretization error ξ(vi) is equal to two times the length of pi, di. Thus ξ(vi)

represents the error in N̂(vi) with respect to T ∗, due to the choice of the discretization points. It is easy to

see that:

w(Q) =w(T ∗) +
∑
v∈N

ξ(v).

Since Q starts and ends at the depot p0 and visits one discretization point for each neighborhood, then

w(T̂ ∗)≤w(Q). This means that w(T̂ ∗)≤w(T ∗) +
∑

v∈N ξ(v) and then lb1 =w(T̂ ∗)−∑
v∈N ξ(v)≤w(T ∗).


