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Otto Yu. Šmidt (1891–1956), wrote the
first monograph on group theory which

was not limited to the finite case.
He was also a famous explorer and a

Heroe of Soviet Union
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Finiteness conditions in group theory - The origins

(I. Schur, 1902) Let G be a group whose
center Z(G) has finite index. Then the
commutator subgroup G ′ of G is finite.

Issai Schur (1875–1941)
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Finiteness conditions in group theory - The origins

(S.N. Černikov, 1940) Let G be a soluble
group satisfying the minimal condition on
subgroups. Then G contains an abelian
subgroup of finite index.

Sergei N. Černikov (1912–1987)
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Finiteness conditions in group theory - The origins

(P. Hall, 1954) Let G be a soluble group
satisfying the maximal condition on nor-
mal subgroups. Then G is finitely gener-
ated.

Philip Hall (1904–1982)
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Finiteness conditions in group theory - The origins

(R. Baer, 1968) Let G be a soluble group
whose abelian subgroups are minimax.
Then G is minimax.

Reinhold Baer (1902–1979)

F. de Giovanni - Groups of High Cardinality 6/41



Finiteness conditions in group theory - The origins

The same result was independently
proved in the same year by D.I. Za-
icev

Dmitry I. Zaicev (1942–1990)
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Finiteness conditions in group theory - The origins

(A.I. Mal’cev, 1951) Let G be a locally
nilpotent group whose abelian subgroups
have finite rank. Then G has finite rank
(and it is hypercentral).

Anatoly I. Mal’cev (1909–1967)
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Finiteness conditions in group theory - The origins

(V.S. Čarin, 1957) Let G be a torsion-free
locally soluble group of finite rank. Then
G is soluble.

Viktor S. Čarin (1919–2008)
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Finiteness conditions in group theory
a relevant development

(B.H. Neumann 1955)
(a) A group G has finite conjugacy classes
of subgroups if and only if its centre Z(G)
has finite index.
(b) Every subgroup of a group G has finite
index in its normal closure if and only if
the commutator subgroup G ′ is finite.

Bernhard H. Neumann (1909–2002)
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On the other hand, finiteness conditions cannot have a crucial role
in the study of infinite groups,

because most of the groups which are in some sense large
cannot be analyzed using this tool

For instance, all soluble groups of finite rank are countable
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In the last few years a new point of view, somehow opposite,
has been adopted, looking at large groups

with the aim of understanding
what is decisive for the structure of such groups

Of course, it must be specified what is meant
by “large” and “small” in group theory
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Let X be a class of groups

We shall say that X is a class of large groups
if it satisfies the following conditions:

If a group G contains an X-subgroup, then G belongs to X

If N is a normal subgroup of an X-group G, then at least
one of the groups N and G/N belongs to X

No finite cyclic group lies in X
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Natural examples of classes of large groups

The class of infinite groups

The class of groups of infinite rank

The class of uncountable groups
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Let θ be a property pertaining to subgroups of a group

θ is called absolute if in any group G
all subgroups isomorphic to some θ-subgroup of G

are likewise θ-subgroups
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θ is called an embedding property if in any group G
all images of θ-subgroups under automorphisms of G

likewise have the property θ

Each absolute property is trivially an embedding property

Normality is an embedding property which is not absolute
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Let θ be an embedding property for subgroups

We shall say that a group class X controls θ
if the following condition is satisfied:

If G is any group containing some X-subgroup
and all X-subgroups of G have the property θ,

then θ holds for all subgroups of G

This definition can also be given inside
a fixed universe U
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The class of cyclic groups controls periodicity

The class of finitely generated groups controls commutativity

On the other hand, neither nilpotency nor solubility
are controlled by the class of finitely generated groups
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Normality is controlled by the class of finitely generated groups
and even by that of cyclic groups

But most of the relevant embedding properties
(subnormality, for instance)

cannot be controlled by the class of finitely generated groups

This phenomenon essentially is a consequence of the fact that
finitely generated groups are too small
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Let X be a class of large groups,
and let θ be a property pertaining to subgroups

Since every group containing an X-subgroup lies in X,
X controls θ if and only if the following condition is satisfied:

If G is any X-group
and all X-subgroups of G have the property θ,

then θ holds for all subgroups of G
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The first natural example of a class of large groups
is the class I consisting of all infinite groups

The consideration of the locally dihedral 2-group
shows that normality cannot be controlled by the class I,
even within the universe of periodic metabelian groups
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How large should be X-groups in order to obtain
that the class X controls embedding properties?

Problem
Find natural classes of large groups

which control all relevant embedding properties,
at least inside suitable universes
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A group G ha finite rank r
if every finitely generated subgroup of G
can be generated by at most r elements,

and r is the smallest positive integer with such property

In particular, a group has rank 1
if and only if it is locally cyclic

Groups of infinite rank form a class of large groups
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(M.J. Evans and Y. Kim, 2004)
The class of groups of infinite rank controls normality

in the universe S of soluble groups

Thus if all subgroups of infinite rank
of a soluble group G are normal,

then either G has finite rank or all its subgroups are normal

In the same paper Evans and Kim proved also that
the class of groups of infinite rank

controls subnormality with defect at most k in the universe S
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Three years ago we started a comprehensive project
in order to prove that the class of groups of infinite rank

controls all relevant embedding properties,
at least in the universe of soluble groups

This project is now positively completed
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Problem
Find other classes of large groups which control

all relevant embedding properties,
at least within the universe S of soluble groups

The class of uncountable groups is of this type?
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The study of the control capability
of groups of high cardinality

is the research project of my team for next years
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Shelah has proved that there exist groups of cardinality ℵ1
in which all proper subgroups are countable

Groups of this type (Jónsson groups) play a role
corresponding to that of Tarski groups in the countable case

On the other hand, Jónsson groups are perfect
and simple over the centre, so that they can be avoided
working within the universe of locally soluble groups
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Observe that, while conditions related to the rank
are of algebraic nature, those related to cardinality

are purely set-theoretic

On the other hand, the basic considerations on finite groups
depend on arithmetic arguments;

Lagrange’s theorem, Sylow’s theorem, the results of Burnside
and the celebrated theorem of Feit-Thompson

Therefore in some sense the point of view just described
provides a kind of unity between finite and infinite groups
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Normality in uncountable groups

Ehrenfeucht and Faber have constructed an extraspecial group U
of cardinality ℵ1 whose abelian subgroups are countable

Then every uncountable subgroup of U
is not abelian, and so is normal

It follows that the class of uncountable groups cannot control
normality, even in the universe of nilpotent groups
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The control of normality in uncountable groups

M. De Falco - F. de Giovanni - H. Heineken - C. Musella
“Normality in uncountable groups”

(in preparation)

Let ℵ be an uncountable regular cardinal, and let G be a group
of cardinality ℵ in which all subgroups of cardinality ℵ is normal.

Then all subgroups of G are normal,
provided that one of the following conditions holds:

G contains an abelian subgroup of cardinality ℵ

G is residually of cardinality strictly smaller than ℵ
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The structure of groups whose uncountable subgroups
are normal is in general quite restricted

Let ℵ be an uncountable regular cardinal,
and let G be a locally soluble group of cardinality ℵ

in which all subgroups of cardinality ℵ are normal.
Then G is a 2-Engel group.

In particulare G is nilpotent of class at most 3,
and its commutator subgroup G ′ is abelian

of cardinality strictly smaller than ℵ.
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In this situation a sharper description of G ′ can be given:
G ′ is the direct product of a p-group and a group

of order at most 2, if G is periodic,
and G ′ is divisible if G is torsion-free
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The control of absolute property in uncountable groups

F. de Giovanni - M. Trombetti
“Nilpotency in uncountable groups”
(submitted to J. Austral. Math. Soc.)

Let ℵ be an uncountable regular cardinal, and let G be a group
of cardinality ℵ with no infinite simple homomorphic images.

If all proper subgroups of G of cardinality ℵ is nilpotent,
then G itself is nilpotent.
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The control of absolute properties in uncountable groups

F. de Giovanni - M. Trombetti
“Uncountable groups with restrictions on subgroups of large cardinality”

J. Algebra (2016)

Let ℵ be an uncountable regular cardinal, and let G be a group
of cardinality ℵ with no infinite simple homomorphic images.

If all proper subgroups of G of cardinality ℵ

have finite conjugacy classes, Then G itself has finite conjugacy classes
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