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Representation growth function

Definition
Let G be a group. For n ∈ N, we denote by rn(G ) the number
of isomorphism classes of n-dimensional irreducible complex
representations of G .

When G is a topological or an algebraic group, it is tacitly
understood that representations enumerated by rn(G ) are
continuous or rational, respectively.

Definition
We say that G is (representation) rigid when rn(G ) is finite for
all n ∈ N.
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4(o)

PRG

The function rn(G ) as n varies in N is called the representation
growth function of G .

Definition
If the sequence

RN(G ) =
N∑

n=1

rn(G ) for N ∈ N,

is bounded by a polynomial in N, the group G is said to have
polynomial representation growth (PRG).
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4(o)

Representation zeta function

The representation growth of a rigid group can be studied by
means of the representation zeta function, namely, the Dirichlet
series

ζG (s) =
∞∑
n=1

rn(G )n−s ,

where s is a complex variable.
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4(o)

Abscissa of convergence

Definition
The abscissa of convergence α(G ) of the series ζG (s) is the
infimum of all α ∈ R such that ζG (s) converges on the
complex half-plane {s ∈ C | <(s) > α}

Proposition

Let G have PRG. The abscissa of convergence α(G ) is the
smallest value such that

RN(G ) = O(1 + Nα(G)+ε)

for every ε ∈ R>0
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4(o)

Larsen and Lubotzky conjecture

Larsen and Lubotzky made the following conjecture.

Conjecture (Larsen and Lubotzky, 2008)

Let H be a higher-rank semisimple group. Then, for any two
irreducible lattices Γ1 and Γ2 in H, α(Γ1) = α(Γ2).

• In 2011 Avni, Klopsch, Onn and Voll proved a variant of
Larsen and Lubotzky conjecture for higher-rank semisimple
groups in characteristic 0 assuming that both α(Γ1) and
α(Γ2) are finite.

• Using p-adic integration and approximative Clifford theory,
the same authors proved Larsen and Lubotzky’s conjecture
for groups of type A2.
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Definition
An arithmetic group is a group Γ which is commensurable to
H(O), where H is a connected, simply connected semisimple
linear algebraic group defined over a number field k and O is
the the ring of integers in k .

We make the following simplification: from now on an
arithmetic group is H(O) for H and O as above.
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4(o)

Congruence subgroups

Definition
Let Γ = H(O) be and arithmetic group with and O as above
and H ≤ GLd for some d ∈ N . A principal congruence
subgroup of level m of Γ is Γ ∩ Id + Matd(pm) for p a prime
ideal in O.

Definition (Congruence subgroup)

A subgroup of and arithmetic group Γ is called a congruence
subgroup when it contains a principal congruence subgroup.
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4(o)

CSP

Definition (Congruence subgroup property)

Let S be the set of archimedean places of O. We say that an
arithmetic group Γ = H (O) has the weak congruence subgroup
property (wCSP) when the map

Ĥ (O)→ H (Ô)

has finite kernel.

Theorem (Lubotzky and Martin, 2004)

Let Γ be an arithmetic group in characteristic 0. Then Γ has
PRG if and only if it has the wCSP.
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4(o)

Euler products

Proposition (Larsen and Lubotzky 2008)

When Γ has the CSP, the representation zeta function of Γ
admits an Euler product decomposition.

Let Γ = H(O), and let S be the set of archimedean places in
O. The Euler product decomposition is

ζΓ(s) = ζH(C)(s)|k :Q| ·
∏
v /∈S

ζH(Ov )(s) .

• The first factor enumerates the rational irreducible
representations of the group H (C) and is known as Witten
zeta function.

• The factors indexed by v /∈ S are representation zeta
functions of compact p-adic analytic groups counting
irreducible representations with finite image (i.e.
continuous irreducible representations).
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Potent and saturable subgroups

Let G be a connected simply connected semisimple linear
algebraic group defined over Z with Lie algebra g = Lie(G).
Let k be a number field with ring of integers O and completion
o with respect to a prime ideal p. We set G = G (o) and
g = g(o).

The principal congruence subgroup of G of level m is

Gm = ker(G → G(o/pm))

Proposition (Avni, Klopsch, Onn and Voll, 2013)

Let e = e(o,Zp) be the absolute ramification index of o.
If m > e · (p − 1)−1, then Gm is saturable. Moreover, if p > 2
and m ≥ e · (p − 2)−1, then Gm is potent. If p = 2 and
m ≥ 2e, then Gm is potent.
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Sheets

Let L = g(C) and let d = dimC L. We define the locus of
constant centralizer dimension k ≤ d

Xk
L(C) = {x ∈ L | dimCCL (x) = k}.

and we set
fk = dimCXk

L(C),
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Zeta function as product of
geometric progressions

Theorem (MZ)

Let S ⊆ {1, . . . , d} be the set of all possible dimensions for
centralizers in L.

Assume that the Killing form on g is
non-degenerate. Assume further that g has smooth and
irreducible loci of constant centralizer dimension. Then for all
m ∈ N such that Gm is potent and saturable

ζGm(s) = qd ·m
∑
I⊆S

gg,I (q) ·
∏
i∈I

qfi−(d−i) s+2
2

1− qfi−(d−i) s+2
2

.
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Theorem (MZ)

Let S ⊆ {1, . . . , d} be the set of all possible dimensions for
centralizers in L. Assume that the Killing form on g is
non-degenerate. Assume further that g has smooth and
irreducible loci of constant centralizer dimension. Then for all
m ∈ N such that Gm is potent and saturable

ζGm(s) = qd ·m
∑
I⊆S

gg,I (q) ·
∏
i∈I

qfi−(d−i) s+2
2

1− qfi−(d−i) s+2
2

.
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ζSLm
4 (o)(s)

Let o be a compact discrete valuation ring of characteristic 0
whose residue field has cardinality q and characteristic not
equal to 2. Then, for all m ∈ N such that SLm

4 (o) is potent
and saturable,

ζSLm
4 (o)(s) = q15mF(q, q−s)

G(q, q−s)

where
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F(q, t) = qt18 −
(
q7 + q6 + q5 + q4 − q3 − q2 − q

)
t15

+
(
q8 − 2 q5 − q3 + q2

)
t14

+
(
q9 + 2 q8 + 2 q7 − 2 q5 − 4 q4 − 2 q3 − q2 + 2 q + 1

)
t13

−
(
q10 + q9 + q8 − 2 q7 − 2 q6 − 2 q5 + 2 q3 + q2 + q

)
t12

+
(
q8 + 2 q6 + q4 − q3 − q2 − q

)
t11 +

(
q8 + q7 − 2 q4 + q

)
t10

−
(
2 q10 + q9 + q8 − q7 − 3 q6 − 2 q5 − 3 q4 − q3 + q2 + q + 2

)
t9

+
(
q9 − 2 q6 + q3 + q2

)
t8−

(
q9 + q8 + q7 − q6 − 2 q4 − q2

)
t7

−
(
q9 + q8 + 2 q7 − 2 q5 − 2 q4 − 2 q3 + q2 + q + 1

)
t6

+
(
q10 + 2 q9 − q8 − 2 q7 − 4 q6 − 2 q5 + 2 q3 + 2 q2 + q

)
t5

+
(
q8 − q7 − 2 q5 + q2

)
t4+

(
q9 + q8 + q7 − q6 − q5 − q4 − q3

)
t3+q9

G(q, t) = q9
(
1− qt3

)(
1− qt4

)(
1− q2t5

)(
1− q3t6

)
.


	Definitions and background
	Representation growth function
	Polynomial representation growth
	Zeta function
	Abscissa
	Larsen and Lubotzky conjecture
	Arithmetic groups
	Congruence subgroup property
	Euler products

	Main results
	p-adic Lie theory
	Zeta function as product of geometric progressions
	The representation zeta function of SL4m (o)


