Michele Zordan

Definitions and background

Representation growth function Polynomial representation growth Zeta function Abscissa Larsen and Lubotzky conjecture Arithmetic groups Congruence subgroup property Euler products

Main results

p-adic Lie theory Zeta function as product of geometric progressions The representation zeta function of $SL_4^m(o)$

Representation Growth of Arithmetic Groups

Michele Zordan

University of Bielefeld

michele.zordan@math.uni-bielefeld.de

April 2, 2016

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Michele Zordan

Definitions and background

Representation growth function Polynomial representation growth Zeta function Abscissa Larsen and Lubotzky conjecture Arithmetic groups Conjecture subgroup property Fuler products

Main results

p-adic Lie theory Zeta function as product of geometric progressions The representation zeta function of $SL_4^m(\sigma)$

Representation growth function

Definition

Let G be a group. For $n \in \mathbb{N}$, we denote by $r_n(G)$ the number of isomorphism classes of n-dimensional irreducible complex representations of G.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Michele Zordan

Definitions and background

Representation growth function Polynomial representation growth Zeta function Abscissa Larsen and Lubotzky conjecture Arithmetic groups Congruence subgroup property Euler products

Main results

p-adic Lie theory Zeta function as product of geometric progressions The representation zeta function of $SL_4^m(\sigma)$

Representation growth function

Definition

Let G be a group. For $n \in \mathbb{N}$, we denote by $r_n(G)$ the number of isomorphism classes of n-dimensional irreducible complex representations of G.

When G is a topological or an algebraic group, it is tacitly understood that representations enumerated by $r_n(G)$ are continuous or rational, respectively.

Definition

We say that G is (representation) rigid when $r_n(G)$ is finite for all $n \in \mathbb{N}$.

Michele Zordan

Definitions and background

Representation growth function Polynomial representation growth Zeta function Abscissa Larsen and Lubotzky conjecture Arithmetic groups Congruence subgroup property Euler products

Main results

p-adic Lie theory Zeta function as product of geometric progressions The representation zeta function of $SL_4^m(\sigma)$

Representation growth function

Definition

Let G be a group. For $n \in \mathbb{N}$, we denote by $r_n(G)$ the number of isomorphism classes of n-dimensional irreducible complex representations of G.

When G is a topological or an algebraic group, it is tacitly understood that representations enumerated by $r_n(G)$ are continuous or rational, respectively.

Definition

We say that G is (representation) rigid when $r_n(G)$ is finite for all $n \in \mathbb{N}$.

Michele Zordan

Definitions and background

Representation growth function Polynomial representation growth

Zeta functio Abscissa

Larsen and Lubotzky conjecture Arithmetic groups Congruence subgroup property Euler products

Main results

p-adic Lie theory Zeta function as product of geometric progressions The representation zeta function of $SL_4^m(o)$

PRG

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

The function $r_n(G)$ as *n* varies in \mathbb{N} is called the representation growth function of *G*.

Michele Zordan

Definitions and background

Representation growth function Polynomial representation growth

Zeta function Abscissa

Larsen and Lubotzky conjecture Arithmetic groups Congruence subgroup property Euler product

Main results

p-adic Lie theory Zeta function as product of geometric progressions The representation zeta function of $SL_4^m(\sigma)$

PRG

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The function $r_n(G)$ as *n* varies in \mathbb{N} is called the representation growth function of *G*.

Definition

If the sequence

$$R_N(G) = \sum_{n=1}^N r_n(G) ext{ for } N \in \mathbb{N},$$

is bounded by a polynomial in N, the group G is said to have polynomial representation growth (PRG).

Michele Zordan

Definitions and background

Representation growth function Polynomial representation growth

Zeta function

Abscissa Larsen and Lubotzky conjecture Arithmetic groups Congruence subgroup property Euler produc

Main results

p-adic Lie theory Zeta function as product of geometric progressions The representation zeta function of $SL_4^m(o)$

Representation zeta function

The representation growth of a rigid group can be studied by means of the *representation zeta function*, namely, the Dirichlet series

$$\zeta_G(s) = \sum_{n=1}^{\infty} r_n(G) n^{-s},$$

▲□▼▲□▼▲□▼▲□▼ □ ● ●

where s is a complex variable.

Michele Zordan

Definitions and background

Representation growth function Polynomial representation growth Zeta function

Abscissa

Larsen and Lubotzky conjecture Arithmetic groups Congruence subgroup property Euler product

Main results

```
→adic Lie theory
Zeta function as
product of
geometric
progressions
The
representation
zeta function of
SL<sup>m</sup><sub>4</sub>(◦)
```

Abscissa of convergence

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Definition

The abscissa of convergence $\alpha(G)$ of the series $\zeta_G(s)$ is the infimum of all $\alpha \in \mathbb{R}$ such that $\zeta_G(s)$ converges on the complex half-plane $\{s \in \mathbb{C} \mid \Re(s) > \alpha\}$

Michele Zordan

Definitions and background

Representation growth function Polynomial representation growth Zeta function

Abscissa

Larsen and Lubotzky conjecture Arithmetic groups Congruence subgroup property Euler product

Main results

```
→adic Lie theory
Zeta function as
product of
geometric
progressions
The
representation
zeta function of
SL<sup>m</sup><sub>4</sub>(◦)
```

Abscissa of convergence

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Definition

The abscissa of convergence $\alpha(G)$ of the series $\zeta_G(s)$ is the infimum of all $\alpha \in \mathbb{R}$ such that $\zeta_G(s)$ converges on the complex half-plane $\{s \in \mathbb{C} \mid \Re(s) > \alpha\}$

Michele Zordan

Definitions and background

Representation growth function Polynomial representation growth Zeta function

Abscissa

Larsen and Lubotzky conjecture Arithmetic groups Congruence subgroup property Euler product

Main results

p-adic Lie theory Zeta function as product of geometric progressions The representation zeta function of $SL_{d}^{m}(\circ)$

Abscissa of convergence

Definition

The abscissa of convergence $\alpha(G)$ of the series $\zeta_G(s)$ is the infimum of all $\alpha \in \mathbb{R}$ such that $\zeta_G(s)$ converges on the complex half-plane $\{s \in \mathbb{C} \mid \Re(s) > \alpha\}$

Proposition

Let G have PRG. The abscissa of convergence $\alpha(G)$ is the smallest value such that

$$\mathsf{R}_{\mathsf{N}}(\mathsf{G}) = O(1 + \mathsf{N}^{\alpha(\mathsf{G}) + \varepsilon})$$

for every $\varepsilon \in \mathbb{R}_{>0}$

Michele Zordan

Definitions and background

Representation growth function Polynomial representation growth Zeta function Abscissa

Larsen and Lubotzky conjecture Arithmetic groups Congruence subgroup property Euler product

Main results

→adic Lie theory Zeta function as product of geometric progressions The representation zeta function of SL^m₄(◦)

Larsen and Lubotzky conjecture

Larsen and Lubotzky made the following conjecture.

Conjecture (Larsen and Lubotzky, 2008)

Let H be a higher-rank semisimple group. Then, for any two irreducible lattices Γ_1 and Γ_2 in H, $\alpha(\Gamma_1) = \alpha(\Gamma_2)$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Michele Zordan

Definitions and background

Representation growth function Polynomial representation growth Zeta function Abscissa

Larsen and Lubotzky conjecture Arithmetic groups Congruence subgroup property Euler product

Main results

p-adic Lie theory Zeta function as product of geometric progressions The representation zeta function of $SL_4^m(o)$

Larsen and Lubotzky conjecture

Larsen and Lubotzky made the following conjecture.

Conjecture (Larsen and Lubotzky, 2008)

Let *H* be a higher-rank semisimple group. Then, for any two irreducible lattices Γ_1 and Γ_2 in *H*, $\alpha(\Gamma_1) = \alpha(\Gamma_2)$.

 In 2011 Avni, Klopsch, Onn and Voll proved a variant of Larsen and Lubotzky conjecture for higher-rank semisimple groups in characteristic 0 assuming that both α(Γ₁) and α(Γ₂) are finite.

Michele Zordan

Definitions and background

Representation growth function Polynomial representation growth Zeta function Abscissa

Larsen and Lubotzky conjecture Arithmetic groups Congruence subgroup property Euler product

Main results

p-adic Lie theory Zeta function as product of geometric progressions The representation zeta function of SL^m₄(σ)

Larsen and Lubotzky conjecture

Larsen and Lubotzky made the following conjecture.

Conjecture (Larsen and Lubotzky, 2008)

Let *H* be a higher-rank semisimple group. Then, for any two irreducible lattices Γ_1 and Γ_2 in *H*, $\alpha(\Gamma_1) = \alpha(\Gamma_2)$.

- In 2011 Avni, Klopsch, Onn and Voll proved a variant of Larsen and Lubotzky conjecture for higher-rank semisimple groups in characteristic 0 assuming that both α(Γ₁) and α(Γ₂) are finite.
- Using *p*-adic integration and approximative Clifford theory, the same authors proved Larsen and Lubotzky's conjecture for groups of type *A*₂.

Michele Zordan

Definitions and background

Representation growth function Polynomial representation growth Zeta function Abscissa

Lubotzky conjecture

Arithmetic groups

Congruence subgroup property Euler product

Main results

p-adic Lie theory Zeta function as product of geometric progressions The representation zeta function of $SL_{4}^{m}(o)$

Definition

An arithmetic group is a group Γ which is commensurable to $H(\mathcal{O})$, where H is a connected, simply connected semisimple linear algebraic group defined over a number field k and \mathcal{O} is the the ring of integers in k.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Michele Zordan

Definitions and background

Representation growth function Polynomial representation growth Zeta function Abscissa

Larsen and Lubotzky conjecture

Arithmetic groups

Congruence subgroup property Euler product

Main results

 $\begin{array}{l} \label{eq:p-adic Lie theory} \\ \text{Zeta function as} \\ \text{product of} \\ \text{geometric} \\ \text{progressions} \\ \text{The} \\ \text{representation} \\ \text{zeta function of} \\ \text{SL}^{m}_{4}(\circ) \end{array}$

Definition

An arithmetic group is a group Γ which is commensurable to $H(\mathcal{O})$, where H is a connected, simply connected semisimple linear algebraic group defined over a number field k and \mathcal{O} is the the ring of integers in k.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

We make the following simplification: from now on an arithmetic group is $H(\mathcal{O})$ for H and \mathcal{O} as above.

Michele Zordan

Definitions and background

Representation growth function Polynomial representation growth Zeta function Abscissa

Larsen and Lubotzky conjecture

Arithmetic groups

Congruence subgroup property Euler product

Main results

>-adic Lie theory Zeta function as product of geometric progressions The representation zeta function of SL^m₄(o)

Congruence subgroups

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Definition

Let $\Gamma = H(\mathcal{O})$ be and arithmetic group with and \mathcal{O} as above and $H \leq \operatorname{GL}_d$ for some $d \in \mathbb{N}$. A principal congruence subgroup of level *m* of Γ is $\Gamma \cap I_d + \operatorname{Mat}_d(\mathfrak{p}^m)$ for \mathfrak{p} a prime ideal in \mathcal{O} .

Michele Zordan

Definitions and background

Representation growth function Polynomial representation growth Zeta function Abscissa

Lubotzky conjecture

Arithmetic groups

Congruence subgroup property Euler product

Main results

p-adic Lie theory Zeta function as product of geometric progressions The representation zeta function of SL^m₄(\circ)

Congruence subgroups

Definition

Let $\Gamma = H(\mathcal{O})$ be and arithmetic group with and \mathcal{O} as above and $H \leq \operatorname{GL}_d$ for some $d \in \mathbb{N}$. A principal congruence subgroup of level *m* of Γ is $\Gamma \cap I_d + \operatorname{Mat}_d(\mathfrak{p}^m)$ for \mathfrak{p} a prime ideal in \mathcal{O} .

Definition (Congruence subgroup)

A subgroup of and arithmetic group Γ is called a congruence subgroup when it contains a principal congruence subgroup.

Michele Zordan

CSP

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Definitions and background

Representation growth function Polynomial representation growth Zeta function Abscissa Larsen and

Lubotzky conjecture Arithmetic groups

Congruence subgroup property

Euler products

Main results

p-adic Lie theory Zeta function as product of geometric progressions The representation zeta function of $SL_{d}^{m}(\circ)$

Definition (Congruence subgroup property)

Let S be the set of archimedean places of \mathcal{O} . We say that an arithmetic group $\Gamma = H(\mathcal{O})$ has the *weak congruence subgroup* property (wCSP) when the map

$$\widehat{\mathsf{H}\left(\mathcal{O}\right)}\to\mathsf{H}\left(\widehat{\mathcal{O}}\right)$$

has finite kernel.

Michele Zordan

CSP

Definitions and background

Representation growth function Polynomial representation growth Zeta function Abscissa Larsen and

Lubotzky conjecture Arithmetic groups

Congruence subgroup property

Euler products

Main results

p-adic Lie theory Zeta function as product of geometric progressions The representation zeta function of $SL_4^m(\sigma)$

Definition (Congruence subgroup property)

Let S be the set of archimedean places of \mathcal{O} . We say that an arithmetic group $\Gamma = H(\mathcal{O})$ has the *weak congruence subgroup* property (wCSP) when the map

$$\widehat{\mathsf{H}\left(\mathcal{O}\right)}\to\mathsf{H}\left(\widehat{\mathcal{O}}\right)$$

has finite kernel.

Theorem (Lubotzky and Martin, 2004)

Let Γ be an arithmetic group in characteristic 0. Then Γ has PRG if and only if it has the wCSP.

Michele Zordan

Definitions and background

Representation growth function Polynomial representation growth Zeta function Abscissa Larsen and Lubotzky conjecture Arithmetic groups Conjecture subgroups Euber products

Euler produces

Main results

p-adic Lie theory Zeta function as product of geometric progressions The representation zeta function of SL^m_d(\circ)

Proposition (Larsen and Lubotzky 2008)

When Γ has the CSP, the representation zeta function of Γ admits an Euler product decomposition.

Euler products

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Michele Zordan

Definitions and background

Representation growth function Polynomial representation growth Zeta function Abscissa Larsen and Lubotzky conjecture Arithmetic groups Congruence

Euler products

Main results

p-adic Lie theory Zeta function as product of geometric progressions The representation zeta function of SL^m₄(σ)

Euler products

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Proposition (Larsen and Lubotzky 2008)

When Γ has the CSP, the representation zeta function of Γ admits an Euler product decomposition.

Let $\Gamma = H(\mathcal{O})$, and let S be the set of archimedean places in \mathcal{O} . The Euler product decomposition is

$$\zeta_{\Gamma}(s) = \zeta_{\mathsf{H}(\mathbb{C})}(s)^{|k : \mathbb{Q}|} \cdot \prod_{\nu \notin S} \zeta_{\mathsf{H}(\mathcal{O}_{\nu})}(s).$$

Michele Zordan

Definitions and background

Representation growth function Polynomial representation growth Zeta function Abscissa Larsen and Lubotzky conjecture Arithmetic groups Congruence subgroup

Euler products

Main results

Proposition (Larsen and Lubotzky 2008)

When Γ has the CSP, the representation zeta function of Γ admits an Euler product decomposition.

Euler products

Let $\Gamma = H(\mathcal{O})$, and let S be the set of archimedean places in \mathcal{O} . The Euler product decomposition is

$$\zeta_{\Gamma}(s) = \zeta_{\mathsf{H}(\mathbb{C})}(s)^{|k : \mathbb{Q}|} \cdot \prod_{\nu \notin S} \zeta_{\mathsf{H}(\mathcal{O}_{\nu})}(s) \,.$$

• The first factor enumerates the *rational* irreducible representations of the group $H(\mathbb{C})$ and is known as Witten zeta function.

Michele Zordan

Definitions and background

Representation growth function Polynomial representation growth Zeta function Abscissa Larsen and Lubotzky conjecture Arithmetic groups Congruence subgroup property

Euler products

Main results

p-adic Lie theory Zeta function as product of geometric progressions The representation zeta function of $SL_4^m(o)$

Proposition (Larsen and Lubotzky 2008)

When Γ has the CSP, the representation zeta function of Γ admits an Euler product decomposition.

Euler products

Let $\Gamma = H(\mathcal{O})$, and let S be the set of archimedean places in \mathcal{O} . The Euler product decomposition is

$$\zeta_{\Gamma}(s) = \zeta_{\mathsf{H}(\mathbb{C})}(s)^{|k:\mathbb{Q}|} \cdot \prod_{\nu \notin S} \zeta_{\mathsf{H}(\mathcal{O}_{\nu})}(s).$$

- The first factor enumerates the *rational* irreducible representations of the group $H(\mathbb{C})$ and is known as Witten zeta function.
- The factors indexed by v ∉ S are representation zeta functions of compact p-adic analytic groups counting irreducible representations with *finite image* (i.e. continuous irreducible representations).

Michele Zordan

Definitions and background

Representation growth functio Polynomial representation dyscrissa Larsen and Lubotzky conjecture Arithmetic groups Congruence subgroup property Fuler products

Main results

p-adic Lie theory

Zeta function as product of geometric progressions The representation zeta function of $SL_4^m(o)$

Potent and saturable subgroups

Let G be a connected simply connected semisimple linear algebraic group defined over \mathbb{Z} with Lie algebra $\mathbf{g} = \text{Lie}(G)$. Let k be a number field with ring of integers \mathcal{O} and completion \mathfrak{o} with respect to a prime ideal \mathfrak{p} . We set $G = G(\mathfrak{o})$ and $\mathfrak{g} = \mathbf{g}(\mathfrak{o})$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Michele Zordan

Definitions and background

Representation growth functio Polynomial representation growth Zeta function Abscissa Larsen and Lubotzky conjecture Arithmetic groups Congruence subgroup property Euler products

Main results

p-adic Lie theory

Zeta function as product of geometric progressions The representation zeta function of $SL_4^m(\sigma)$

Potent and saturable subgroups

Let G be a connected simply connected semisimple linear algebraic group defined over \mathbb{Z} with Lie algebra $\mathbf{g} = \text{Lie}(G)$. Let k be a number field with ring of integers \mathcal{O} and completion \mathfrak{o} with respect to a prime ideal \mathfrak{p} . We set $G = G(\mathfrak{o})$ and $\mathfrak{g} = \mathbf{g}(\mathfrak{o})$.

The principal congruence subgroup of G of level m is

$$G^m = \ker(G \to \mathsf{G}(\mathfrak{o}/\mathfrak{p}^m))$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Michele Zordan

Definitions and background

Representation growth function Polynomial representation dyscient Abscissa Larsen and Lubotzky conjecture Arithmetic groups Congruence subgroup property Euler products

Main results

p-adic Lie theory

Zeta function as product of geometric progressions The representation zeta function of $SL_4^m(o)$

Potent and saturable subgroups

Let G be a connected simply connected semisimple linear algebraic group defined over \mathbb{Z} with Lie algebra $\mathbf{g} = \text{Lie}(G)$. Let k be a number field with ring of integers \mathcal{O} and completion \mathfrak{o} with respect to a prime ideal \mathfrak{p} . We set $G = G(\mathfrak{o})$ and $\mathfrak{g} = \mathbf{g}(\mathfrak{o})$.

The principal congruence subgroup of G of level m is

$$G^m = \ker(G o \mathsf{G}(\mathfrak{o}/\mathfrak{p}^m))$$

Proposition (Avni, Klopsch, Onn and Voll, 2013)

Let $e = e(\mathfrak{o}, \mathbb{Z}_p)$ be the absolute ramification index of \mathfrak{o} . If $m > e \cdot (p-1)^{-1}$, then G^m is saturable. Moreover, if p > 2and $m \ge e \cdot (p-2)^{-1}$, then G^m is potent. If p = 2 and $m \ge 2e$, then G^m is potent.

Michele Zordan

Definitions and background

Representation growth function Polynomial representation growth Zeta function Abscissa Lubotzky conjecture Arithmetic groups Conjecture avithmetic groups Congruence subgroup property Euler products

Main results

p-adic Lie theory

Zeta function as product of geometric progressions The representation zeta function of $SL_4^m(o)$

Let $\mathcal{L} = \mathbf{g}(\mathbb{C})$ and let $d = \dim_{\mathbb{C}} \mathcal{L}$. We define the locus of constant centralizer dimension $k \leq d$

$$X_{\mathcal{L}}^{k}(\mathbb{C}) = \{x \in \mathcal{L} \mid \dim_{\mathbb{C}} C_{\mathcal{L}}(x) = k\}.$$

and we set

$$f_k = \dim_{\mathbb{C}} X^k_{\mathcal{L}}(\mathbb{C}),$$

Sheets

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Michele Zordan

Definitions and background

Representation growth functio Polynomial representation growth Zeta function Abscissa Larsen and Lubotzky conjecture Arithmetic groups Congruence subgroup property

Euler products

Main results

p-adic Lie theory

Zeta function as product of geometric progressions The representation zeta function of $SU_{a}^{2}(a)$

Zeta function as product of geometric progressions

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Theorem (MZ)

Let $S \subseteq \{1, \ldots, d\}$ be the set of all possible dimensions for centralizers in \mathcal{L} .

Michele Zordan

Definitions and background

Representation growth functio Polynomial representation growth Zeta function Abscissa Larsen and Lubotzky conjecture Arithmetic groups Congruence subgroup property

Euler products

Main results

p-adic Lie theory

Zeta function as product of geometric progressions The representation zeta function of SLT(a)

Zeta function as product of geometric progressions

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Theorem (MZ)

Let $S \subseteq \{1, \ldots, d\}$ be the set of all possible dimensions for centralizers in \mathcal{L} . Assume that the Killing form on \mathfrak{g} is non-degenerate.

Michele Zordan

Definitions and background

Representation growth functic Polynomial representation growth Zeta function Abscissa Larsen and Lubotzky conjecture Arithmetic groups Congruence subgroup property

Main results

p-adic Lie theory

Zeta function as product of geometric progressions The representation zeta function of SL^m₂(o)

Zeta function as product of geometric progressions

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Theorem (MZ)

Let $S \subseteq \{1, \ldots, d\}$ be the set of all possible dimensions for centralizers in \mathcal{L} . Assume that the Killing form on \mathfrak{g} is non-degenerate. Assume further that \mathfrak{g} has smooth and irreducible loci of constant centralizer dimension.

Michele Zordan

Definitions and background

Representation growth functic Polynomial representation growth Zeta function Abscissa Larsen and Lubotzky conjecture Arithmetic groups Congruence subgroup property Euler products

Main results

p-adic Lie theory

Zeta function as product of geometric progressions The representation zeta function of $SL_{A}^{m}(o)$

Zeta function as product of geometric progressions

Theorem (MZ)

Let $S \subseteq \{1, \ldots, d\}$ be the set of all possible dimensions for centralizers in \mathcal{L} . Assume that the Killing form on \mathfrak{g} is non-degenerate. Assume further that \mathfrak{g} has smooth and irreducible loci of constant centralizer dimension. Then for all $m \in \mathbb{N}$ such that G^m is potent and saturable

$$\zeta_{\mathcal{G}^m}(s) = q^{d \cdot m} \sum_{I \subseteq \mathcal{S}} g_{\mathfrak{g},I}(q) \cdot \prod_{i \in I} \frac{q^{f_i - (d-i)\frac{s+2}{2}}}{1 - q^{f_i - (d-i)\frac{s+2}{2}}}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Michele Zordan

Definitions and background

Representation growth functio Polynomial representation growth Zeta function Abscissa Larsen and Lubotzky conjecture Arithmetic groups Congruence subgroup property

Main reculte

p-adic Lie theory Zeta function as product of geometric progressions

The representation zeta function of $SL_{4}^{m}(o)$

$\zeta_{\mathrm{SL}_4^m(\mathfrak{o})}(s)$

Let \mathfrak{o} be a compact discrete valuation ring of characteristic 0 whose residue field has cardinality q and characteristic not equal to 2. Then, for all $m \in \mathbb{N}$ such that $\mathrm{SL}_4^m(\mathfrak{o})$ is potent and saturable,

$$ilde{S}_{\mathrm{SL}_4^m(\mathfrak{o})}(s) = q^{15m} rac{\mathcal{F}(q,q^{-s})}{\mathcal{G}(q,q^{-s})}$$

(

where

Michele Zordan

Definitions and background

Representation growth function Polynomial representation growth Zeta function Abscissa Larsen and Lubotzky conjecture Arithmetic groups Congruence subgroup property Euler products

Main results

p-adic Lie theory Zeta function as product of geometric progressions

The representation zeta function of $SL^m_{\mathbf{A}}(o)$

$$\begin{split} \mathcal{F}(q,t) &= qt^{18} - \left(q^7 + q^6 + q^5 + q^4 - q^3 - q^2 - q\right)t^{15} \\ &+ \left(q^8 - 2\,q^5 - q^3 + q^2\right)t^{14} \\ &+ \left(q^9 + 2\,q^8 + 2\,q^7 - 2\,q^5 - 4\,q^4 - 2\,q^3 - q^2 + 2\,q + 1\right)t^{13} \\ &- \left(q^{10} + q^9 + q^8 - 2\,q^7 - 2\,q^6 - 2\,q^5 + 2\,q^3 + q^2 + q\right)t^{12} \\ &+ \left(q^8 + 2\,q^6 + q^4 - q^3 - q^2 - q\right)t^{11} + \left(q^8 + q^7 - 2\,q^4 + q\right)t^{10} \\ &- \left(2\,q^{10} + q^9 + q^8 - q^7 - 3\,q^6 - 2\,q^5 - 3\,q^4 - q^3 + q^2 + q + 2\right)t^9 \\ &+ \left(q^9 - 2\,q^6 + q^3 + q^2\right)t^8 - \left(q^9 + q^8 + q^7 - q^6 - 2\,q^4 - q^2\right)t^7 \\ &- \left(q^9 + q^8 + 2\,q^7 - 2\,q^5 - 2\,q^4 - 2\,q^3 + q^2 + q + 1\right)t^6 \\ &+ \left(q^{10} + 2\,q^9 - q^8 - 2\,q^7 - 4\,q^6 - 2\,q^5 + 2\,q^3 + 2\,q^2 + q\right)t^5 \\ &+ \left(q^8 - q^7 - 2\,q^5 + q^2\right)t^4 + \left(q^9 + q^8 + q^7 - q^6 - q^5 - q^4 - q^3\right)t^3 \\ &\mathcal{G}(q,t) = q^9(1 - qt^3)\left(1 - qt^4\right)\left(1 - q^2t^5\right)\left(1 - q^3t^6\right). \end{split}$$

・ロト ・ 一 ト ・ モト ・ モト

₹ 9Q@