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First-order group theory

(∀x∀y∀z)([x , y , z ] = 1) G nilp. of class 6 2 Yes!
(∀x ∈ G ′)(∀z)([x , z ] = 1) G nilp. of class 6 2 No!

(∀x1∀x2∀x3∀x4)(∃y1, y2)([x1, x2][x3, x4] = [y1, y2])
every element of G ′ is a commutator

(∀x1∀x2∃y)(y 6= x1 ∧ y 6= x2) |G | > 3
(∀x1∀x2∀x3∀x4)(

∨
16i<j64 xi = xj) |G | 6 3

(∀x)(x6 = 1→ x = 1) no elements of order 2, 3

g4 = 1 ∧ g2 6= 1 g has order 4

(∃n)(gn = 1) g has finite order No!

(∀x ∈ G ′)(x7 = 1) G ′ has exponent dividing 7 No!
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Some finite axiomatizations

(1) {groups of order 6 n}, {groups of order > n}, {groups with no
elements of order n}
(2) Let H = {h1, . . . , hn} be finite, hihj = hµ(i ,j)

θH(x1, . . . , xn) : (
∧

i 6=j(xi 6= xj) ∧
∧

i ,j(xixj = xµ(i ,j)))
φH : (∃x1 · · · ∃xn) θH(x1, . . . , xn)
ψH : (∃x1 · · · ∃xn)(∀y)(θH(x1, . . . , xn) ∧ (

∨
i y = xi ))

G |= φH : ∃ subgroup ∼= H, G |= ψH : G ∼= H.

(3) Soluble groups: defined by ‘no g 6= 1 is a prod. of commutators
[gh, gk ]’; that is, ρn holds ∀n

ρn : (∀g∀x1 . . . ∀xn∀y1 . . . ∀yn)(g = 1 ∨ g 6= [g x1 , g y1 ] . . . [g xn , g yn ]).

Theorem (JSW) A finite group is soluble iff it satisfies ρ56.
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Definable sets

. . . sets of elements g ∈ G defined by first-order formulae, possibly with
parameters from G .

Examples: Z(G ), defined by (∀y)([x , y ] = 1)

• CG (h), defined by [x , h] = 1

• Uh = {[h−1, hg ] | g ∈ G}, Vh = {u1u2u3 | u1, u2, u3 ∈ Uh},
Wh =

⋃
{Vhg | g ∈ G , [Vh,Vhg ] 6= 1}.

• Centralizers of definable sets are definable:
Say S = {s | ϕ(s)}; then CG (S) = {t | ∀g(ϕ(g)→ [g , t] = 1)}

So ∃ f.o. formula ωh with ωh(g) iff g ∈ CGCG (Wh)
• δ(x , y) : δ(h1, h2) iff C2

G (Wh1) = C2
G (Wh2)

• ∃ β(x) : β(h) iff C2
G (Wh) commutes with its distinct conjugates
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Interpretations: an example

K a field, T the mult. group K \ {0}.

G =

{(
1 x
0 t

)
| x ∈ K , t ∈ T

}
.

Write (x , t) for above matrix,
A = {(x , 1) | x ∈ K} ∼= K+ and H = {(0, t) | t ∈ T} ∼= T .
So A / G , G = Ao H. Fix e = (1, 1) ∈ A.
A = {k | (∀g) [kg , k] = 1} definable in G , and
H = {g | ge = eg} = CG (e) definable (with parameter e).
For a, b in A define
a + b = ab,

a ∗ b =

{
1 if a or b = 1

ag if not, where b = eg with g ∈ G .
A becomes a field isomorphic to K .
The set A and the operations on A are definable in G . An interpretation
(with parameter e) of the field K in the group G .
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The rooted tree of type (2, 3, 2, 3, . . . )
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The rooted tree of type (2, 3, 2, 3, . . . )

Let G act faithfully on T fixing v .
Second layer L2 is a union of G -orbits
rstG (u) – elements moving only vertices in Tu

rstG (2) = 〈rstG (w) | w ∈ 2nd layer〉, dir. product of six conj. subgroups
Basal subgroup B: the distinct conjs. of B generate their dir. product
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Fix (mn)n>0, a sequence of integers mn > 2.

The rooted tree T of type (mn) has a root vertex v0 of valency m0. Each
vertex of distance n > 1 from v0 has valency mn + 1.
nth layer Ln: all vertices u at distance n from v0.
So mn edges descend from each u ∈ Ln.
For a vertex u, the subtree with root u is Tu.

Let G act faithfully on T .
rstG (u) = {g | g fixes each vertex outside Tu}.
rstG (n) = 〈rstG (u) | u ∈ Ln〉.

G acts as a branch group on T if for each n,
• G acts transitively on Ln,
• rstG (n) has finite index in G .
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Examples, motivation

(1) ‘Easiest’ counter-examples to general Burnside conjecture:

Aleshin, Grigorchuk, Gupta–Sidki infinite f.g. p-groups,

(2) Numerous other important examples

(3) Many examples G are just infinite (JI); i.e., infinite and
G/K finite whenever 1 6= K / G .

G is called hereditarily just infinite (HJI) if every subgroup of finite index
is JI.

(JSW, 1972) If G is JI and not virtually abelian then either
• G 6f H wr Sym(m) for some m where H is HJI, or
• G is a branch group.

G is virtually abelian (vA) if G has an abelian subgroup of finite index.
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Fundamental Lemma (Grigorchuk). If G is a branch group on T and
1 6= K � G then rstG (n)′ 6 K for some n.
So all proper quotients are vA.

Lemma. (Grigorchuk & JSW, 2002) Branch groups have no non-triv. vA
normal subgroups.

Definition. G is Boolean if G 6= 1 and
• G/K is vA (virtually abelian) whenever 1 < K 6 G ;
• G has no non-trivial vA normal subgroups.

So branch groups are Boolean.
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Structure lattice

Assume G is Boolean.

L(G ) = {H 6 G | |G : NG (H)| finite}

– a lattice of subgroups of G .

Write H1 ∼ H2 iff CG (H1) = CG (H2). An equiv. reln. on L(G ).

The lattice operations in L(G ) induce well-defined join and meet
operations ∨, ∧ in

L = L(G ) = L(G )/∼.

L is the structure lattice of G ; greatest and least elements [G ] and
[1] = {1}.
L is a Boolean lattice: complemented with distributive laws:
a ∨ (b1 ∧ b2) = (a ∨ b1) ∧ (a ∨ b2), . . .
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Basal subgroups

Definition. B is a basal subgroup of G if B ∈ L(G ) and 〈Bg | g ∈ G 〉 is
the direct product of the distinct conjugates of B.

Examples:

(1) the natural direct factors of the base group of H wr Sym(m);
(2) restricted stabilizers of vertices in branch groups.
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Structure graph

Branch groups G can have branch actions on essentially different maximal
trees. These actions are encoded in the structure graph Γ(G ):

Γ(G ) = {[B] | B basal in G} (⊆ L(G ) ).

edges are the pairs (a, b) with b maximal in {c | c ∈ Γ(G ), c < a}.

Conjugation in G induces an action on L(G ) and Γ(G ).

The tree on which G acts embeds equivariantly in the structure graph;
often the embedding is an equivariant IM of trees.

In this case G ‘knows’ its tree: can find the tree within G .
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New description of structure graph

For Y ⊆ G write C2
G (Y ) for CG (CG (Y )), etc. So Y ⊆ C2

G (Y ),
C3
G (Y ) = CG (Y ).

H ∈ L(G ) is C2-closed if H = C2
G (H).

Lemma Let G be a branch group.

(a) If H1, H2 ∈ L(G ) have same centralizer then C2
G (H1) = C2

G (H2).

(b) B basal ⇒ C2
G (B) basal.

(c) B1 < B2 basal, C2-closed ⇒ NG (B1) < NG (B2).

The graph B(G ) has
• vertices the non-trivial C2-closed basal subgroups,
• edge between vertices if one is a maximal proper C2-closed basal

subgroup of the other.

G acts on B(G ) by conjugation.
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Lemma G branch, on tree T , and v a vertex. Then
C2
G (rstG (v)) = rstG (v), so rst(v) ∈ B(G ).

Proof .

Theorem. G branch, acting on T .

(a) B 7→ [B] is a G -equivariant IM B(G )→ Γ(G ).

(b) v 7→ rstG (v) is a G -equivt. order-preserving injective map T → B(G ).
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Properties of B = B(G ) for branch G :

• G is the only vertex fixed in the G -action on B
• the orbit O(B) of each vertex B is finite

• each vertex B is connected to vertex G by a finite path; all simple
such paths have length 6 log2(|O(B)|)
• ∀ B ∈ B ∃ branch action for which B is the restricted stabilizer of a

vertex

• if B is a tree then G acts on it as a branch group.

Questions about B = B(G )
• finite valency?
• can there be exactly ℵ0 maximal trees?
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Maximal trees

Corollary. G branch. The foll. are equivt.:

(i) ∃ a unique max. tree up to G -equivariant IM on which G acts as a
branch group;

(ii) B(G ) is a tree;

(iii) ∀ B, B1, B2 ∈ B(G ) with B 6 B1 and B 6 B2, either B1 6 B2 or
B2 6 B1.
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Now G is a branch group.

Recall the foll. definition. For each h ∈ G

Vh = {[h−1, hk1 ][h−1, hk2 ][h−1, hk3 ] | k1, k2, k3 ∈ G},
Wh =

⋃
{Vhg | g ∈ G , [Vh,Vhg ] 6= 1}.

β(x) : β(h) iff C2
G (Wh) commutes with its distinct conjugates

Key Proposition. ∀B ∈ B(G ), ∃ h ∈ G with B = C2
G (Wh).

Proof uses (among other things) the result of Hardy, Abért: branch groups
satisfy no group laws. In particular, if u ∈ T then ∃ x , y ∈ rstG (u) with
(xy)2 6= y2x2.
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Interpretation in branch groups

Theorem (JSW, 2015). There are first-order formulae τ , β(x), δ(x , y)
s.t. the following holds for each branch group G :

(a) G has a branch action on a unique maximal tree up to G -equivariant
IM iff G |= τ ;

(b) S = {x | β(x)} is a union of conj. classes, so G acts on it by
conjugation;

(c) the relation on S defined by δ(x , y) is a G -invariant preorder. So
Q = S/∼, where ∼ is the equiv. relation defined by δ(x , y) ∧ δ(y , x),
is a poset on which G acts;

(d) Q is G -equivariantly isom. as poset to structure graph¿

When G has a branch action on a unique maximal tree T , this represents
T as quotient of a definable subset of G modulo a definable equivalence
relation. A parameter-free interpretation for T , and for the action on T .
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The results give a very weak sort of axiomatization of the class of branch
groups.

Similar ideas (with sets like the sets Wh) apply in other contexts.

Current joint work with Andrew Glass:

AutO(Ω) = group of order-preserving automs. of ordered set Ω.

Theorem. If AutO(Ω) is transitive on Ω and AutO(Ω), AutO(R) satisfy
the same first-order sentences (in a slightly extended language) then Ω, R
are isomorphic as ordered sets.
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What would I like you to remember?

• ideas of first-order group theory
• definition of a branch group
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The rooted tree of type (2, 3, 2, 3, . . . )

Let G act faithfully on T fixing v .
Second layer L2 is a union of G -orbits
rstG (u) – elements moving only vertices in Tu

rstG (2) = 〈rstG (w) | w ∈ 2nd layer〉, dir. product of six conj. subgroups
Basal subgroup B: the distinct conjs. of B generate their dir. product
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What would I like you to remember?

• ideas of first-order group theory

• definition of a branch group

and basal subgroups

• the restricted stabilizers of vertices are basal subgroups B
with C2(B) = B

• if G acts as a branch group on a ‘unique tree’ then this tree is
essentially the set of basal subgroups B with C2(B) = B

• there’s a first-order sentence deciding whether the above holds

and then G ‘knows’ its tree in the sense of first-order group
theory
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