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First-order group theory

(VxVyVz)([x,y,z] = 1) G nilp. of class < 2 Yes!
(Vx € G")(Vz)([x,z] = 1) G nilp. of class < 2 No!

(Vx1VxaVx3Vxa ) (3y1, y2)([x1, x2][x3, xa] = [y1, y2])
every element of G’ is a commutator

(VxaVx3y)(y # x1 Ay # x2) 1G] >3

(VaVxeVxs¥xa)(Vigicjca xi = ) 1G] <3

(V) (x0 =1 = x=1) no elements of order 2,3

gt=1ng>#1 g has order 4

(3n)(g"=1) g has finite order No!
(Vx € G")(x" =1) G’ has exponent dividing 7 No!



Some finite axiomatizations

(1) {groups of order < n}, {groups of order > n}, {groups with no
elements of order n}

(2) Let H = {hl, ceey hn} be finite, h;hj = h,u(i,j)

On(xt, .- Xn): (/\i;ﬁj(Xf # Xj) N /\iJ(Xi)(j = Xu(i,j)))
O (3xa - 3xn) On(xa, -y Xn)
Y (3xa - 3x) (V) (On(xa, - x0) AV y = X))

G | ¢y: 3 subgroup = H, GEvy: G=H.
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elements of order n}

(2) Let H = {hl, cey hn} be finite, h;hj = h,u(i,j)
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[g",g¥]'; that is, p, holds Vn
pn: (V8Yx1 ... VXVy1.. . Vyn)(g =1V g #[e™,8"]...[e", &"]).



Some finite axiomatizations

(1) {groups of order < n}, {groups of order > n}, {groups with no
elements of order n}

(2) Let H = {hl, ceey hn} be finite, h;hj = h,u(i,j)

On(xt, ..., Xn): (/\i;éj(xf # Xj) A\ /\iJ(Xi)(j = Xu(i.j)))
O (3xa - 3xn) On(xa, -y Xn)
Y (3xe e Ixa) (YY) (O (X, o xn) AV Y = i)
G | ¢y: 3 subgroup = H, GEvy: G=H.
(3) Soluble groups: defined by ‘no g # 1 is a prod. of commutators
[g",g¥]'; that is, p, holds Vn
pn: (VEVx1 .. . VxpWy1 .. Vyn)(g =1V g # g, 8"]...[g7. "))
Theorem (JSW) A finite group is soluble iff it satisfies pse.



Definable sets

sets of elements g € G defined by first-order formulae, possibly with
parameters from G.
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Definable sets

sets of elements g € G defined by first-order formulae, possibly with
parameters from G.

Examples: Z(G), defined by (Vy)([x,y] =1)
e C(h), defined by [x, h] =1

o U, = {[h_l,hg] ‘ g c G}, Vy = {U1U2U3 | ui, Uz, us3 € Uh},
Wh = U{th ‘ g c G, [Vh, th] 7é 1}.
e Centralizers of definable sets are definable:
Say S = {s | ¢(s)}; then Cc(S) = {t | Vg(p(g) — [g,t] = 1)}

So 3 f.o. formula wp, with wp(g) iff g € CcCq(Wh)
° 5(X,y)2 5(/’11, h2) iff C2G(Wh1) = C2G(Wh2)
e 3 B3(x): B(h) iff CZ(Wp) commutes with its distinct conjugates



Interpretations: an example

K a field, T the mult. group K \ {0}.

G:{(l X> IxeK,te T}.
0t

Write (x, t) for above matrix,

A={(x,1) | xe K} =Ky and H={(0,t) | te T} = T.
SoA<G, G=AxH. Fixe=(1,1)¢€A.

A= {k | (Vg)[k&, k] = 1} definable in G, and

H={g | ge = eg} = Cs(e) definable (with parameter e).
For a, b in A define

a-+ b= ab,

1 ifaorb=1
axb=
a8 if not, where b = €8 with g € G.

A becomes a field isomorphic to K.

The set A and the operations on A are definable in G. An interpretation

(with parameter €) of the field K in the group G.
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The rooted tree of type (2,3,2,3,...)

oV < root vertex

. second
A f e layer

< the tree with root u
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The rooted tree of type (2,3,2,3,...)

eV < root vertex

< the tree with root u

Let G act faithfully on T fixing v.

Second layer L is a union of G-orbits

rstg(u) — elements moving only vertices in T,

rstg(2) = (rstg(w) | w € 2nd layer), dir. product of six conj. subgroups
Basal subgroup B: the distinct conjs. of B generate their dir. product
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Fix (mp)n=0, a sequence of integers m, > 2.

The rooted tree T of type (m,) has a root vertex vp of valency mg. Each
vertex of distance n > 1 from vy has valency m, + 1.

nth layer L,: all vertices u at distance n from vp.

So m, edges descend from each u € L,,.

For a vertex u, the subtree with root uis T,,.



Fix (mp)n=0, a sequence of integers m, > 2.

The rooted tree T of type (m,) has a root vertex vp of valency mg. Each
vertex of distance n > 1 from vy has valency m, + 1.

nth layer L,: all vertices u at distance n from vp.

So m, edges descend from each u € L,,.

For a vertex u, the subtree with root uis T,,.

Let G act faithfully on T.
rstg(u) = {g | g fixes each vertex outside T,}.
rstg(n) = (rstg(u) | u € Ly).
G acts as a branch group on T if for each n,
e G acts transitively on L,
e rstg(n) has finite index in G.



Examples, motivation

(1) ‘Easiest’ counter-examples to general Burnside conjecture:

Aleshin, Grigorchuk, Gupta—Sidki infinite f.g. p-groups,
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Examples, motivation

(1) ‘Easiest’ counter-examples to general Burnside conjecture:

Aleshin, Grigorchuk, Gupta—Sidki infinite f.g. p-groups,
(2) Numerous other important examples

(3) Many examples G are just infinite (JI); i.e., infinite and
G/K finite whenever 1 # K < G.

G is called hereditarily just infinite (HJI) if every subgroup of finite index
is JI.

(JSW, 1972) If G is JI and not virtually abelian then either
e G < HwrSym(m) for some m where H is HJI, or
e G is a branch group.

Gis if G has an abelian subgroup of finite index.



Fundamental Lemma (Grigorchuk). If G is a branch group on T and
1 # K < G then rstg(n)’ < K for some n.
So all proper quotients are vA.
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Fundamental Lemma (Grigorchuk). If G is a branch group on T and
1 # K < G then rstg(n)’ < K for some n.
So all proper quotients are vA.

Lemma. (Grigorchuk & JSW, 2002) Branch groups have no non-triv. vA
normal subgroups.

Definition. G is Boolean if G # 1 and
e G/K is vA (virtually abelian) whenever 1 < K < G;
e G has no non-trivial vA normal subgroups.

So branch groups are Boolean.
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Structure lattice

Assume G is Boolean.
L(G) ={H < G| |G : Ng(H)| finite}

— a lattice of subgroups of G.
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L(G) ={H < G| |G : Ng(H)| finite}
— a lattice of subgroups of G.

Write Hy; ~ Hy iff Cg(H1) = Cg(H2). An equiv. reln. on L(G).

The lattice operations in L(G) induce well-defined join and meet
operations V, A in

L=L(G)=L(G)/~.
L is the structure lattice of G; greatest and least elements [G] and
[1] = {1}.
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Structure lattice

Assume G is Boolean.
L(G) ={H < G| |G : Ng(H)| finite}
— a lattice of subgroups of G.

Write Hy; ~ Hy iff Cg(H1) = Cg(H2). An equiv. reln. on L(G).

The lattice operations in L(G) induce well-defined join and meet
operations V, A in

L=L(G)=L(G)/~.
L is the structure lattice of G; greatest and least elements [G] and
[1] = {1}.

L is a Boolean lattice: complemented with distributive laws:
aV(biAb)=(aVbi)A(aV b), ...
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Definition. B is a basal subgroup of G if B € L(G) and (B8 | g € G) is
the direct product of the distinct conjugates of B.



Basal subgroups

Definition. B is a basal subgroup of G if B € L(G) and (B8 | g € G) is
the direct product of the distinct conjugates of B.

Examples:

(1) the natural direct factors of the base group of Hwr Sym(m);
(2) restricted stabilizers of vertices in branch groups.



Structure graph

Branch groups G can have branch actions on essentially different maximal
trees. These actions are encoded in the structure graph I'(G):

M(G) ={[B]| B basal in G} (C L(G) ).
edges are the pairs (a, b) with b maximal in {c | c € [(G), c < a}.

Conjugation in G induces an action on £(G) and I'(G).



-
Structure graph

Branch groups G can have branch actions on essentially different maximal
trees. These actions are encoded in the structure graph I'(G):

M(G) =A{[B]| B basalin G} (C L(G)).
edges are the pairs (a, b) with b maximal in {c | c € [(G), c < a}.
Conjugation in G induces an action on £(G) and I'(G).

The tree on which G acts embeds equivariantly in the structure graph;
often the embedding is an equivariant IM of trees.

In this case G ‘knows’ its tree: can find the tree within G.



New description of structure graph

For Y C G write CZ(Y) for Cg(Cg(Y)), etc. So Y C CZ(Y),
CL(Y) = Co(Y).

H € L(G) is C?closed if H = C%(H).

Lemma Let G be a branch group.

(a) If Hi, Ho € L(G) have same centralizer then CZ(H;) = CZ(Ha).
(b) B basal = C2%(B) basal.

(c) By < By basal, C?~closed = Ng(B1) < Ng(B>).

The graph B(G) has

e vertices the non-trivial C2-closed basal subgroups,

e edge between vertices if one is a maximal proper C?-closed basal
subgroup of the other.

G acts on B(G) by conjugation.



Lemma G branch, on tree T, and v a vertex. Then
CZ(rstg(v)) = rstg(v), so rst(v) € B(G).

Proof .



Lemma G branch, on tree T, and v a vertex. Then
CZ(rstg(v)) = rstg(v), so rst(v) € B(G).

Proof .

Theorem. G branch, acting on T.
(2) B+ [B]is a G-equivariant IM B(G) — (G).

(b) v rstg(v) is a G-equivt. order-preserving injective map T — B(G).
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Properties of B = B(G) for branch G:

e G is the only vertex fixed in the G-action on B

e the orbit O(B) of each vertex B is finite

e each vertex B is connected to vertex G by a finite path; all simple
such paths have length < log,(|O(B)|)

e V B € B d branch action for which B is the restricted stabilizer of a
vertex

e if Bis a tree then G acts on it as a branch group.
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Properties of B = B(G) for branch G:

G is the only vertex fixed in the G-action on B

the orbit O(B) of each vertex B is finite

each vertex B is connected to vertex G by a finite path; all simple

such paths have length < log,(|O(B)|)

e V B € B d branch action for which B is the restricted stabilizer of a
vertex

e if Bis a tree then G acts on it as a branch group.

Questions about B = B(G)
e finite valency?
e can there be exactly g maximal trees?



Maximal trees

Corollary. G branch. The foll. are equivt.:

(i) 3 a unique max. tree up to G-equivariant IM on which G acts as a
branch group;

(i) B(G) is a tree;
(iii) V B, By, B, € B(G) with B < B; and B < By, either By < B; or
B, < B;y.



Now G is a branch group.

Recall the foll. definition. For each h € G
Vi = {[h~*, hR][hE W] [h=h hR] | ke ko, ks € G,
Wi = U{Vke | g € G, [Vh, Vie] # 1}.
B(x): B(h) iff CZ(Ws) commutes with its distinct conjugates



Now G is a branch group.
Recall the foll. definition. For each h € G
Vi = {[h~1, h][A~t, W] (A2, W] | ke, ko, ks € G,
Wh =U{Vhe | & € G, [Vh, Vie] # 1}
B(x): B(h) iff CZ(Ws) commutes with its distinct conjugates

Key Proposition. VB € B(G), 3 h € G with B = CZ(W,).

Proof uses (among other things) the result of Hardy, Abért: branch groups
satisfy no group laws. In particular, if u € T then 3 x,y € rstg(u) with

(xy)* # y°x°.



Interpretation in branch groups

Theorem (JSW, 2015). There are first-order formulae 7, 5(x), d(x, y)
s.t. the following holds for each branch group G:

(a) G has a branch action on a unique maximal tree up to G-equivariant
IM iff G = 7;

(b) S ={x|p(x)} is a union of conj. classes, so G acts on it by
conjugation;

(c) the relation on S defined by d(x,y) is a G-invariant preorder. So
Q = S/~, where ~ is the equiv. relation defined by d(x,y) A d(y, x),
is a poset on which G acts;

(d) Q is G-equivariantly isom. as poset to structure graph;

When G has a branch action on a unique maximal tree T, this represents
T as quotient of a definable subset of G modulo a definable equivalence
relation. A parameter-free interpretation for T, and for the action on T.



The results give a very weak sort of axiomatization of the class of branch
groups.

Similar ideas (with sets like the sets W},) apply in other contexts.
Current joint work with Andrew Glass:
Auto(Q2) = group of order-preserving automs. of ordered set €.

Theorem. If Autp(Q) is transitive on Q and Autp(Q2), Auto(R) satisfy
the same first-order sentences (in a slightly extended language) then Q, R
are isomorphic as ordered sets.



What would | like you to remember?

e ideas of first-order group theory
e definition of a branch group
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The rooted tree of type (2,3,2,3,...)

eV < root vertex

< the tree with root u

Let G act faithfully on T fixing v.

Second layer L is a union of G-orbits

rstg(u) — elements moving only vertices in T,

rstg(2) = (rstg(w) | w € 2nd layer), dir. product of six conj. subgroups
Basal subgroup B: the distinct conjs. of B generate their dir. product
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What would | like you to remember?

e ideas of first-order group theory
e definition of a branch group
and basal subgroups

e the restricted stabilizers of vertices are basal subgroups B
with C3(B) = B

e if G acts as a branch group on a ‘unique tree’ then this tree is
essentially the set of basal subgroups B with C?>(B) = B

e there's a first-order sentence deciding whether the above holds

and then G ‘knows' its tree in the sense of first-order group
theory



