First-order Group Theory and Branch Groups

John Wilson

jsw13@cam.ac.uk; John.Wilson@maths.ox.ac.uk

Ischia, 31 March 2016

First-order group theory

$$
\begin{array}{lcl}
(\forall x \forall y \forall z)([x, y, z]=1) & G \text { nilp. of class } \leqslant 2 & \text { Yes! } \\
\left(\forall x \in G^{\prime}\right)(\forall z)([x, z]=1) & G \text { nilp. of class } \leqslant 2 & \text { No! } \\
\left.\left.\left(\forall x_{1} \forall x_{2} \forall x_{3} \forall x_{4}\right)\left(\exists y_{1}, y_{2}\right)\left(\left[x_{1}, x_{2}\right]\right] x_{3}, x_{4}\right]=\left[y_{1}, y_{2}\right]\right) & \\
\text { every element of } G^{\prime} \text { is a commutator } & \\
\left(\forall x_{1} \forall x_{2} \exists y\right)\left(y \neq x_{1} \wedge y \neq x_{2}\right) \quad|G| \geqslant 3 & \\
\left(\forall x_{1} \forall x_{2} \forall x_{3} \forall x_{4}\right)\left(\bigvee_{1 \leqslant i<j \leqslant 4} x_{i}=x_{j}\right) \quad|G| \leqslant 3 & \\
(\forall x)\left(x^{6}=1 \rightarrow x=1\right) & \text { no elements of order } 2,3 & \\
g^{4}=1 \wedge g^{2} \neq 1 & g \text { has order 4 } & \\
(\exists n)\left(g^{n}=1\right) & g \text { has finite order } & \text { No! } \\
\left(\forall x \in G^{\prime}\right)\left(x^{7}=1\right) & G^{\prime} & \text { has exponent dividing } 7
\end{array}
$$

Some finite axiomatizations

(1) $\{$ groups of order $\leqslant n\}$, \{groups of order $\geqslant n\}$, \{groups with no elements of order $n\}$
(2) Let $H=\left\{h_{1}, \ldots, h_{n}\right\}$ be finite, $h_{i} h_{j}=h_{\mu(i, j)}$
$\theta_{H}\left(x_{1}, \ldots, x_{n}\right):\left(\bigwedge_{i \neq j}\left(x_{i} \neq x_{j}\right) \wedge \bigwedge_{i, j}\left(x_{i} x_{j}=x_{\mu(i, j)}\right)\right)$
$\phi_{H}:\left(\exists x_{1} \cdots \exists x_{n}\right) \theta_{H}\left(x_{1}, \ldots, x_{n}\right)$
$\psi_{H}: \quad\left(\exists x_{1} \cdots \exists x_{n}\right)(\forall y)\left(\theta_{H}\left(x_{1}, \ldots, x_{n}\right) \wedge\left(\bigvee_{i} y=x_{i}\right)\right)$
$G \models \phi_{H}: \quad \exists$ subgroup $\cong H$,

$$
G \models \psi_{H}: \quad G \cong H .
$$

Some finite axiomatizations

(1) $\{$ groups of order $\leqslant n\}$, $\{$ groups of order $\geqslant n\}$, $\{$ groups with no elements of order $n\}$
(2) Let $H=\left\{h_{1}, \ldots, h_{n}\right\}$ be finite, $h_{i} h_{j}=h_{\mu(i, j)}$
$\theta_{H}\left(x_{1}, \ldots, x_{n}\right):\left(\bigwedge_{i \neq j}\left(x_{i} \neq x_{j}\right) \wedge \bigwedge_{i, j}\left(x_{i} x_{j}=x_{\mu(i, j)}\right)\right)$
$\phi_{H}:\left(\exists x_{1} \cdots \exists x_{n}\right) \theta_{H}\left(x_{1}, \ldots, x_{n}\right)$
$\psi_{H}: \quad\left(\exists x_{1} \cdots \exists x_{n}\right)(\forall y)\left(\theta_{H}\left(x_{1}, \ldots, x_{n}\right) \wedge\left(\bigvee_{i} y=x_{i}\right)\right)$
$G \models \phi_{H}: \quad \exists$ subgroup $\cong H, \quad G \models \psi_{H}: \quad G \cong H$.
(3) Soluble groups: defined by 'no $g \neq 1$ is a prod. of commutators [$\left.g^{h}, g^{k}\right]^{\prime}$; that is, ρ_{n} holds $\forall n$

$$
\rho_{n}:\left(\forall g \forall x_{1} \ldots \forall x_{n} \forall y_{1} \ldots \forall y_{n}\right)\left(g=1 \vee g \neq\left[g^{x_{1}}, g^{y_{1}}\right] \ldots\left[g^{x_{n}}, g^{y_{n}}\right]\right)
$$

Some finite axiomatizations

(1) $\{$ groups of order $\leqslant n\}$, \{groups of order $\geqslant n\}$, $\{$ groups with no elements of order $n\}$
(2) Let $H=\left\{h_{1}, \ldots, h_{n}\right\}$ be finite, $h_{i} h_{j}=h_{\mu(i, j)}$
$\theta_{H}\left(x_{1}, \ldots, x_{n}\right):\left(\bigwedge_{i \neq j}\left(x_{i} \neq x_{j}\right) \wedge \bigwedge_{i, j}\left(x_{i} x_{j}=x_{\mu(i, j)}\right)\right)$
$\phi_{H}:\left(\exists x_{1} \cdots \exists x_{n}\right) \theta_{H}\left(x_{1}, \ldots, x_{n}\right)$
$\psi_{H}: \quad\left(\exists x_{1} \cdots \exists x_{n}\right)(\forall y)\left(\theta_{H}\left(x_{1}, \ldots, x_{n}\right) \wedge\left(\bigvee_{i} y=x_{i}\right)\right)$
$G \models \phi_{H}: \quad \exists$ subgroup $\cong H, \quad G \vDash \psi_{H}: \quad G \cong H$.
(3) Soluble groups: defined by 'no $g \neq 1$ is a prod. of commutators [$\left.g^{h}, g^{k}\right]^{\prime}$; that is, ρ_{n} holds $\forall n$

$$
\rho_{n}:\left(\forall g \forall x_{1} \ldots \forall x_{n} \forall y_{1} \ldots \forall y_{n}\right)\left(g=1 \vee g \neq\left[g^{x_{1}}, g^{y_{1}}\right] \ldots\left[g^{x_{n}}, g^{y_{n}}\right]\right)
$$

Theorem (JSW) A finite group is soluble iff it satisfies ρ_{56}.

Definable sets

\ldots sets of elements $g \in G$ defined by first-order formulae, possibly with parameters from G.

Definable sets

... sets of elements $g \in G$ defined by first-order formulae, possibly with parameters from G.

Examples: $Z(G)$, defined by $(\forall y)([x, y]=1)$

Definable sets

... sets of elements $g \in G$ defined by first-order formulae, possibly with parameters from G.

Examples: $\mathrm{Z}(G)$, defined by $(\forall y)([x, y]=1)$

- $\mathrm{C}_{G}(h)$, defined by $[x, h]=1$

Definable sets

... sets of elements $g \in G$ defined by first-order formulae, possibly with parameters from G.

Examples: $\mathrm{Z}(G)$, defined by $(\forall y)([x, y]=1)$

- $\mathrm{C}_{G}(h)$, defined by $[x, h]=1$
- $U_{h}=\left\{\left[h^{-1}, h^{g}\right] \mid g \in G\right\}, \quad V_{h}=\left\{u_{1} u_{2} u_{3} \mid u_{1}, u_{2}, u_{3} \in U_{h}\right\}$, $W_{h}=\bigcup\left\{V_{h^{g}} \mid g \in G,\left[V_{h}, V_{h^{g}}\right] \neq 1\right\}$.

Definable sets

... sets of elements $g \in G$ defined by first-order formulae, possibly with parameters from G.

Examples: $\mathrm{Z}(G)$, defined by $(\forall y)([x, y]=1)$

- $\mathrm{C}_{G}(h)$, defined by $[x, h]=1$
- $U_{h}=\left\{\left[h^{-1}, h^{g}\right] \mid g \in G\right\}, \quad V_{h}=\left\{u_{1} u_{2} u_{3} \mid u_{1}, u_{2}, u_{3} \in U_{h}\right\}$,

$$
W_{h}=\bigcup\left\{V_{h^{g}} \mid g \in G,\left[V_{h}, V_{h^{g}}\right] \neq 1\right\}
$$

- Centralizers of definable sets are definable: Say $S=\{s \mid \varphi(s)\} ;$ then $C_{G}(S)=\{t \mid \forall g(\varphi(g) \rightarrow[g, t]=1)\}$

Definable sets

\ldots sets of elements $g \in G$ defined by first-order formulae, possibly with parameters from G.

Examples: $\mathrm{Z}(G)$, defined by $(\forall y)([x, y]=1)$

- $\mathrm{C}_{G}(h)$, defined by $[x, h]=1$
- $U_{h}=\left\{\left[h^{-1}, h^{g}\right] \mid g \in G\right\}, \quad V_{h}=\left\{u_{1} u_{2} u_{3} \mid u_{1}, u_{2}, u_{3} \in U_{h}\right\}$,

$$
W_{h}=\bigcup\left\{V_{h^{g}} \mid g \in G,\left[V_{h}, V_{h^{g}}\right] \neq 1\right\}
$$

- Centralizers of definable sets are definable: Say $S=\{s \mid \varphi(s)\}$; then $C_{G}(S)=\{t \mid \forall g(\varphi(g) \rightarrow[g, t]=1)\}$
So \exists f.o. formula ω_{h} with $\omega_{h}(g)$ iff $g \in \mathrm{C}_{G} \mathrm{C}_{G}\left(W_{h}\right)$
- $\delta(x, y): \delta\left(h_{1}, h_{2}\right)$ iff $C_{G}^{2}\left(W_{h_{1}}\right)=\mathrm{C}_{G}^{2}\left(W_{h_{2}}\right)$
- $\exists \beta(x): \beta(h)$ iff $C_{G}^{2}\left(W_{h}\right)$ commutes with its distinct conjugates

Interpretations: an example

K a field, T the mult. group $K \backslash\{0\}$.

$$
G=\left\{\left.\left(\begin{array}{ll}
1 & x \\
0 & t
\end{array}\right) \right\rvert\, x \in K, t \in T\right\} .
$$

Write (x, t) for above matrix,
$A=\{(x, 1) \mid x \in K\} \cong K_{+}$and $H=\{(0, t) \mid t \in T\} \cong T$.
So $A \triangleleft G, G=A \rtimes H$. Fix $e=(1,1) \in A$.
$A=\left\{k \mid(\forall g)\left[k^{g}, k\right]=1\right\}$ definable in G, and
$H=\{g \mid g e=e g\}=C_{G}(e)$ definable (with parameter e).
For a, b in A define
$a+b=a b$,
$a * b=\left\{\begin{array}{ll}1 & \text { if } a \text { or } b=1 \\ a^{g} & \text { if not, where } b=e^{g}\end{array}\right.$ with $g \in G$.
A becomes a field isomorphic to K.
The set A and the operations on A are definable in G. An interpretation (with parameter e) of the field K in the group G.

The rooted tree of type $(2,3,2,3, \ldots)$

The rooted tree of type $(2,3,2,3, \ldots)$

Let G act faithfully on T fixing v.
Second layer L_{2} is a union of G-orbits
$\operatorname{rst}_{G}(u)$ - elements moving only vertices in T_{u}
$\operatorname{rst}_{G}(2)=\left\langle\operatorname{rst}_{G}(w)\right| w \in$ 2nd layer \rangle, dir. product of six conj. subgroups Basal subgroup B : the distinct conjs. of B generate their dir. product

Fix $\left(m_{n}\right)_{n \geqslant 0}$, a sequence of integers $m_{n} \geqslant 2$.
The rooted tree T of type $\left(m_{n}\right)$ has a root vertex v_{0} of valency m_{0}. Each vertex of distance $n \geqslant 1$ from v_{0} has valency $m_{n}+1$. nth layer L_{n} : all vertices u at distance n from v_{0}. So m_{n} edges descend from each $u \in L_{n}$.
For a vertex u, the subtree with root u is T_{u}.

Fix $\left(m_{n}\right)_{n \geqslant 0}$, a sequence of integers $m_{n} \geqslant 2$.
The rooted tree T of type $\left(m_{n}\right)$ has a root vertex v_{0} of valency m_{0}. Each vertex of distance $n \geqslant 1$ from v_{0} has valency $m_{n}+1$. nth layer L_{n} : all vertices u at distance n from v_{0}. So m_{n} edges descend from each $u \in L_{n}$.
For a vertex u, the subtree with root u is T_{u}.
Let G act faithfully on T.
$\operatorname{rst}_{G}(u)=\left\{g \mid g\right.$ fixes each vertex outside $\left.T_{u}\right\}$.
$\operatorname{rst}_{G}(n)=\left\langle\operatorname{rst}_{G}(u) \mid u \in L_{n}\right\rangle$.
G acts as a branch group on T if for each n,

- G acts transitively on L_{n},
- $\operatorname{rst}_{G}(n)$ has finite index in G.

Examples, motivation

(1) 'Easiest' counter-examples to general Burnside conjecture: Aleshin, Grigorchuk, Gupta-Sidki infinite f.g. p-groups,

Examples, motivation

(1) 'Easiest' counter-examples to general Burnside conjecture: Aleshin, Grigorchuk, Gupta-Sidki infinite f.g. p-groups,
(2) Numerous other important examples

Examples, motivation

(1) 'Easiest' counter-examples to general Burnside conjecture: Aleshin, Grigorchuk, Gupta-Sidki infinite f.g. p-groups,
(2) Numerous other important examples
(3) Many examples G are just infinite (JI); i.e., infinite and G / K finite whenever $1 \neq K \triangleleft G$.
G is called hereditarily just infinite (HJI) if every subgroup of finite index is Jl .
(JSW, 1972) If G is Jl and not virtually abelian then either

- $G \leqslant_{f} H$ wr $\operatorname{Sym}(m)$ for some m where H is HJI, or
- G is a branch group.
G is virtually abelian (vA) if G has an abelian subgroup of finite index.

Fundamental Lemma (Grigorchuk). If G is a branch group on T and $1 \neq K \triangleleft G$ then $\operatorname{rst}_{G}(n)^{\prime} \leqslant K$ for some n. So all proper quotients are vA.

Fundamental Lemma (Grigorchuk). If G is a branch group on T and $1 \neq K \triangleleft G$ then $\operatorname{rst}_{G}(n)^{\prime} \leqslant K$ for some n. So all proper quotients are vA.

Lemma. (Grigorchuk \& JSW, 2002) Branch groups have no non-triv. vA normal subgroups.

Fundamental Lemma (Grigorchuk). If G is a branch group on T and $1 \neq K \triangleleft G$ then $\operatorname{rst}_{G}(n)^{\prime} \leqslant K$ for some n.
So all proper quotients are vA.
Lemma. (Grigorchuk \& JSW, 2002) Branch groups have no non-triv. vA normal subgroups.

Definition. G is Boolean if $G \neq 1$ and

- G / K is vA (virtually abelian) whenever $1<K \leqslant G$;
- G has no non-trivial vA normal subgroups.

So branch groups are Boolean.

Structure lattice

Assume G is Boolean.
$\mathbf{L}(G)=\left\{H \leqslant G| | G: \mathbf{N}_{G}(H) \mid\right.$ finite $\}$

- a lattice of subgroups of G.

Structure lattice

Assume G is Boolean.
$\mathrm{L}(G)=\left\{H \leqslant G| | G: \mathbf{N}_{G}(H) \mid\right.$ finite $\}$

- a lattice of subgroups of G.

Write $H_{1} \sim H_{2}$ iff $\mathrm{C}_{G}\left(H_{1}\right)=\mathrm{C}_{G}\left(H_{2}\right)$. An equiv. reln. on $\mathbf{L}(G)$.

Structure lattice

Assume G is Boolean.
$\mathrm{L}(G)=\left\{H \leqslant G| | G: \mathrm{N}_{G}(H) \mid\right.$ finite $\}$

- a lattice of subgroups of G.

Write $H_{1} \sim H_{2}$ iff $\mathrm{C}_{G}\left(H_{1}\right)=\mathrm{C}_{G}\left(H_{2}\right)$. An equiv. reln. on $\mathbf{L}(G)$.
The lattice operations in $\mathbf{L}(G)$ induce well-defined join and meet operations \vee, \wedge in

$$
\mathcal{L}=\mathcal{L}(G)=\mathbf{L}(G) / \sim .
$$

\mathcal{L} is the structure lattice of G; greatest and least elements [G] and $[1]=\{1\}$.

Structure lattice

Assume G is Boolean.
$\mathrm{L}(G)=\left\{H \leqslant G| | G: \mathrm{N}_{G}(H) \mid\right.$ finite $\}$

- a lattice of subgroups of G.

Write $H_{1} \sim H_{2}$ iff $\mathrm{C}_{G}\left(H_{1}\right)=\mathrm{C}_{G}\left(H_{2}\right)$. An equiv. reln. on $\mathbf{L}(G)$.
The lattice operations in $\mathbf{L}(G)$ induce well-defined join and meet operations \vee, \wedge in

$$
\mathcal{L}=\mathcal{L}(G)=\mathbf{L}(G) / \sim
$$

\mathcal{L} is the structure lattice of G; greatest and least elements [G] and $[1]=\{1\}$.
\mathcal{L} is a Boolean lattice: complemented with distributive laws:

$$
a \vee\left(b_{1} \wedge b_{2}\right)=\left(a \vee b_{1}\right) \wedge\left(a \vee b_{2}\right), \ldots
$$

Basal subgroups

Definition. B is a basal subgroup of G if $B \in \mathbf{L}(G)$ and $\left\langle B^{g} \mid g \in G\right\rangle$ is the direct product of the distinct conjugates of B.

Basal subgroups

Definition. B is a basal subgroup of G if $B \in \mathbf{L}(G)$ and $\left\langle B^{g} \mid g \in G\right\rangle$ is the direct product of the distinct conjugates of B.

Examples:
(1) the natural direct factors of the base group of H wr $\operatorname{Sym}(m)$;
(2) restricted stabilizers of vertices in branch groups.

Structure graph

Branch groups G can have branch actions on essentially different maximal trees. These actions are encoded in the structure graph $\Gamma(G)$:

$$
\Gamma(G)=\{[B] \mid B \text { basal in } G\} \quad(\subseteq \mathcal{L}(G)) .
$$

edges are the pairs (a, b) with b maximal in $\{c \mid c \in \Gamma(G), c<a\}$.
Conjugation in G induces an action on $\mathcal{L}(G)$ and $\Gamma(G)$.

Structure graph

Branch groups G can have branch actions on essentially different maximal trees. These actions are encoded in the structure graph $\Gamma(G)$:

$$
\Gamma(G)=\{[B] \mid B \text { basal in } G\} \quad(\subseteq \mathcal{L}(G)) .
$$

edges are the pairs (a, b) with b maximal in $\{c \mid c \in \Gamma(G), c<a\}$.
Conjugation in G induces an action on $\mathcal{L}(G)$ and $\Gamma(G)$.
The tree on which G acts embeds equivariantly in the structure graph; often the embedding is an equivariant IM of trees.

In this case G 'knows' its tree: can find the tree within G.

New description of structure graph

For $Y \subseteq G$ write $C_{G}^{2}(Y)$ for $C_{G}\left(C_{G}(Y)\right)$, etc. So $Y \subseteq C_{G}^{2}(Y)$,
$C_{G}^{3}(Y)=C_{G}(Y)$.
$H \in \mathbf{L}(G)$ is C^{2}-closed if $H=\mathrm{C}_{G}^{2}(H)$.
Lemma Let G be a branch group.
(a) If $H_{1}, H_{2} \in \mathbf{L}(G)$ have same centralizer then $\mathrm{C}_{G}^{2}\left(H_{1}\right)=\mathrm{C}_{G}^{2}\left(H_{2}\right)$.
(b) B basal $\Rightarrow C_{G}^{2}(B)$ basal.
(c) $B_{1}<B_{2}$ basal, C^{2}-closed $\Rightarrow N_{G}\left(B_{1}\right)<\mathrm{N}_{G}\left(B_{2}\right)$.

The graph $\mathcal{B}(G)$ has

- vertices the non-trivial C^{2}-closed basal subgroups,
- edge between vertices if one is a maximal proper C^{2}-closed basal subgroup of the other.
G acts on $\mathcal{B}(G)$ by conjugation.

Lemma G branch, on tree T, and v a vertex. Then $C_{G}^{2}\left(\operatorname{rst}_{G}(v)\right)=\operatorname{rst}_{G}(v)$, so $\operatorname{rst}(v) \in \mathcal{B}(G)$.

Proof.

Lemma G branch, on tree T, and v a vertex. Then $C_{G}^{2}\left(\operatorname{rst}_{G}(v)\right)=\operatorname{rst}_{G}(v)$, so $\operatorname{rst}(v) \in \mathcal{B}(G)$.

Proof.
Theorem. G branch, acting on T.
(a) $B \mapsto[B]$ is a G-equivariant $\mathrm{IM} \mathcal{B}(G) \rightarrow \Gamma(G)$.
(b) $v \mapsto \operatorname{rst}_{G}(v)$ is a G-equivt. order-preserving injective map $T \rightarrow \mathcal{B}(G)$.

Properties of $\mathcal{B}=\mathcal{B}(G)$ for branch G :

- G is the only vertex fixed in the G-action on \mathcal{B}
- the orbit $O(B)$ of each vertex B is finite
- each vertex B is connected to vertex G by a finite path; all simple such paths have length $\leqslant \log _{2}(|O(B)|)$
- $\forall B \in \mathcal{B} \quad \exists$ branch action for which B is the restricted stabilizer of a vertex
- if \mathcal{B} is a tree then G acts on it as a branch group.

Properties of $\mathcal{B}=\mathcal{B}(G)$ for branch G :

- G is the only vertex fixed in the G-action on \mathcal{B}
- the orbit $O(B)$ of each vertex B is finite
- each vertex B is connected to vertex G by a finite path; all simple such paths have length $\leqslant \log _{2}(|O(B)|)$
- $\forall B \in \mathcal{B} \exists$ branch action for which B is the restricted stabilizer of a vertex
- if \mathcal{B} is a tree then G acts on it as a branch group.

Questions about $\mathcal{B}=\mathcal{B}(G)$

- finite valency?

Properties of $\mathcal{B}=\mathcal{B}(G)$ for branch G :

- G is the only vertex fixed in the G-action on \mathcal{B}
- the orbit $O(B)$ of each vertex B is finite
- each vertex B is connected to vertex G by a finite path; all simple such paths have length $\leqslant \log _{2}(|O(B)|)$
- $\forall B \in \mathcal{B} \exists$ branch action for which B is the restricted stabilizer of a vertex
- if \mathcal{B} is a tree then G acts on it as a branch group.

Questions about $\mathcal{B}=\mathcal{B}(G)$

- finite valency?
- can there be exactly \aleph_{0} maximal trees?

Maximal trees

Corollary. G branch. The foll. are equivt.:
(i) \exists a unique max. tree up to G-equivariant IM on which G acts as a branch group;
(ii) $\mathcal{B}(G)$ is a tree;
(iii) $\forall B, B_{1}, B_{2} \in \mathcal{B}(G)$ with $B \leqslant B_{1}$ and $B \leqslant B_{2}$, either $B_{1} \leqslant B_{2}$ or $B_{2} \leqslant B_{1}$.

Now G is a branch group.
Recall the foll. definition. For each $h \in G$
$V_{h}=\left\{\left[h^{-1}, h^{k_{1}}\right]\left[h^{-1}, h^{k_{2}}\right]\left[h^{-1}, h^{k_{3}}\right] \mid k_{1}, k_{2}, k_{3} \in G\right\}$, $W_{h}=\bigcup\left\{V_{h^{g}} \mid g \in G,\left[V_{h}, V_{h g}\right] \neq 1\right\}$.
$\beta(x): \beta(h)$ iff $C_{G}^{2}\left(W_{h}\right)$ commutes with its distinct conjugates

Now G is a branch group.
Recall the foll. definition. For each $h \in G$
$V_{h}=\left\{\left[h^{-1}, h^{k_{1}}\right]\left[h^{-1}, h^{k_{2}}\right]\left[h^{-1}, h^{k_{3}}\right] \mid k_{1}, k_{2}, k_{3} \in G\right\}$, $W_{h}=\bigcup\left\{V_{h g} \mid g \in G,\left[V_{h}, V_{h g}\right] \neq 1\right\}$.
$\beta(x): \beta(h)$ iff $C_{G}^{2}\left(W_{h}\right)$ commutes with its distinct conjugates

Key Proposition. $\forall B \in \mathcal{B}(G), \exists h \in G$ with $B=C_{G}^{2}\left(W_{h}\right)$.
Proof uses (among other things) the result of Hardy, Abért: branch groups satisfy no group laws. In particular, if $u \in T$ then $\exists x, y \in \operatorname{rst}_{G}(u)$ with $(x y)^{2} \neq y^{2} x^{2}$.

Interpretation in branch groups

Theorem (JSW, 2015). There are first-order formulae $\tau, \beta(x), \delta(x, y)$ s.t. the following holds for each branch group G :
(a) G has a branch action on a unique maximal tree up to G-equivariant IM iff $G \models \tau$;
(b) $S=\{x \mid \beta(x)\}$ is a union of conj. classes, so G acts on it by conjugation;
(c) the relation on S defined by $\delta(x, y)$ is a G-invariant preorder. So $Q=S / \sim$, where \sim is the equiv. relation defined by $\delta(x, y) \wedge \delta(y, x)$, is a poset on which G acts;
(d) Q is G-equivariantly isom. as poset to structure graphi

When G has a branch action on a unique maximal tree T, this represents T as quotient of a definable subset of G modulo a definable equivalence relation. A parameter-free interpretation for T, and for the action on T.

The results give a very weak sort of axiomatization of the class of branch groups.

Similar ideas (with sets like the sets W_{h}) apply in other contexts.
Current joint work with Andrew Glass:
$\operatorname{Aut}_{\mathrm{O}}(\Omega)=$ group of order-preserving automs. of ordered set Ω.
Theorem. If $\operatorname{Aut}_{\mathrm{O}}(\Omega)$ is transitive on Ω and $\operatorname{Aut}_{\mathrm{O}}(\Omega)$, $\operatorname{Aut}_{\mathrm{O}}(\mathbb{R})$ satisfy the same first-order sentences (in a slightly extended language) then Ω, \mathbb{R} are isomorphic as ordered sets.

What would I like you to remember?

- ideas of first-order group theory
- definition of a branch group

The rooted tree of type $(2,3,2,3, \ldots)$

Let G act faithfully on T fixing v.
Second layer L_{2} is a union of G-orbits
$\operatorname{rst}_{G}(u)$ - elements moving only vertices in T_{u}
$\operatorname{rst}_{G}(2)=\left\langle\operatorname{rst}_{G}(w)\right| w \in$ 2nd layer \rangle, dir. product of six conj. subgroups Basal subgroup B : the distinct conjs. of B generate their dir. product

What would I like you to remember?

- ideas of first-order group theory
- definition of a branch group
and basal subgroups
- the restricted stabilizers of vertices are basal subgroups B with $C^{2}(B)=B$
- if G acts as a branch group on a 'unique tree' then this tree is essentially the set of basal subgroups B with $C^{2}(B)=B$
- there's a first-order sentence deciding whether the above holds and then G 'knows' its tree in the sense of first-order group theory

