On the Hirsch-Plotkin radical of stability groups

Gunnar Traustason

Department of Mathematical Sciences University of Bath

Ischia Group Theory 2016

Gunnar Traustason On the Hirsch-Plotkin radical of stability groups

On the Hirsch-Plotkin radical of stability groups

- 1. Stability groups of subspace series.
- 2. Characterisation of elts that stabilise a finite subseries.
- 3. A counterexample.
- 4. A strong local nilpotence property.

Definition. Let *V* be a vector space over a field \mathbb{F} . A set \mathcal{L} , consisting of subspaces of *V*, is said to be a series in *V* if

(1) Both 0 and V belong to \mathcal{L} .

(2) The set \mathcal{L} is linearly ordered with respect to inclusion.

(3) For every $\mathcal{F} \subseteq \mathcal{L}$ both $\bigcap \{ W : W \in \mathcal{F} \}$ and $\bigcup \{ W : W \in \mathcal{F} \}$ are in \mathcal{L} .

Definition. Let *V* be a vector space over a field \mathbb{F} . A set \mathcal{L} , consisting of subspaces of *V*, is said to be a series in *V* if

- (1) Both 0 and V belong to \mathcal{L} .
- (2) The set \mathcal{L} is linearly ordered with respect to inclusion.
- (3) For every $\mathcal{F} \subseteq \mathcal{L}$ both $\bigcap \{ W : W \in \mathcal{F} \}$ and $\bigcup \{ W : W \in \mathcal{F} \}$ are in \mathcal{L} .

Definition. Let \mathcal{L} be a series in a vector space V. A jump of \mathcal{L} is an ordered pair (B, T) of elements $B, T \in \mathcal{L}$ such that B < T and there is no $U \in \mathcal{L}$ where B < U < T.

Definition. Let *V* be a vector space over a field \mathbb{F} . A set \mathcal{L} , consisting of subspaces of *V*, is said to be a series in *V* if

- (1) Both 0 and V belong to \mathcal{L} .
- (2) The set \mathcal{L} is linearly ordered with respect to inclusion.
- (3) For every $\mathcal{F} \subseteq \mathcal{L}$ both $\bigcap \{ W : W \in \mathcal{F} \}$ and $\bigcup \{ W : W \in \mathcal{F} \}$ are in \mathcal{L} .

Definition. Let \mathcal{L} be a series in a vector space V. A jump of \mathcal{L} is an ordered pair (B, T) of elements $B, T \in \mathcal{L}$ such that B < T and there is no $U \in \mathcal{L}$ where B < U < T.

Definition. A subseries of \mathcal{L} is a subset of \mathcal{L} which is a series.

Remark. Let $0 \neq b \in V$ and let

$$T = \bigcap \{ U \in \mathcal{L} : v \in U \}, \ B = \bigcup \{ U \in \mathcal{L} : v \notin U \}.$$

Then (B,T) is a jump and $v \in T \setminus B$. Thus if \mathcal{J} is the collection of all the jumps of \mathcal{L} then

 $V\setminus 0=\bigcup_{(B,T)\in\mathcal{J}}T\setminus B$

Remark. Let $0 \neq b \in V$ and let

$$T = \bigcap \{ U \in \mathcal{L} : v \in U \}, \ B = \bigcup \{ U \in \mathcal{L} : v \notin U \}.$$

Then (B,T) is a jump and $v \in T \setminus B$. Thus if \mathcal{J} is the collection of all the jumps of \mathcal{L} then

 $V \setminus 0 = \bigcup_{(B,T) \in \mathcal{J}} T \setminus B$

Definition. Let \mathcal{L} be a series in a vector space V. We say that an element in $g \in GL(V)$ stabilises \mathcal{L} if $T(g-1) \leq B$ for all jumps (B,T) of \mathcal{L} .

 $S(\mathcal{L})$: The stabiliser of \mathcal{L} . $F(\mathcal{L})$: The elts of GL(V) that stabilise a finite subseries. $HP(\mathcal{L})$: The Hirsch-Plotkin radical of $S(\mathcal{L})$. $Fit(\mathcal{L})$: The Fitting subgroup of $S(\mathcal{L})$.

 $S(\mathcal{L})$: The stabiliser of \mathcal{L} . $F(\mathcal{L})$: The elts of GL(V) that stabilise a finite subseries. $HP(\mathcal{L})$: The Hirsch-Plotkin radical of $S(\mathcal{L})$. $Fit(\mathcal{L})$: The Fitting subgroup of $S(\mathcal{L})$.

Lemma(Casolo & Puglisi 2012). The elts of $HP(\mathcal{L})$ are unipotent.

 $S(\mathcal{L})$: The stabiliser of \mathcal{L} . $F(\mathcal{L})$: The elts of GL(V) that stabilise a finite subseries. $HP(\mathcal{L})$: The Hirsch-Plotkin radical of $S(\mathcal{L})$. $Fit(\mathcal{L})$: The Fitting subgroup of $S(\mathcal{L})$.

Lemma(Casolo & Puglisi 2012). The elts of $HP(\mathcal{L})$ are unipotent.

Theorem(C & P 2012). If dim *V* is countable then $F(\mathcal{L}) = HP(\mathcal{L})$.

 $S(\mathcal{L})$: The stabiliser of \mathcal{L} . $F(\mathcal{L})$: The elts of GL(V) that stabilise a finite subseries. $HP(\mathcal{L})$: The Hirsch-Plotkin radical of $S(\mathcal{L})$. $Fit(\mathcal{L})$: The Fitting subgroup of $S(\mathcal{L})$.

Lemma(Casolo & Puglisi 2012). The elts of $HP(\mathcal{L})$ are unipotent.

Theorem(C & P 2012). If dim *V* is countable then $F(\mathcal{L}) = HP(\mathcal{L})$.

Theorem(T 2015). $F(\mathcal{L}) = Fit(\mathcal{L})$.

Example(T 2015). Let $V = \bigoplus_{i=0}^{\infty} \mathbb{F}u_i + \prod_{j=0}^{\infty} \mathbb{F}w_j$ and $\mathcal{L} = \{V_i : i \in \mathbb{N}\} \cup \{0\}$ where $V_n = \bigoplus_{i=n}^{\infty} \mathbb{F}u_i + \prod_{j=n}^{\infty} \mathbb{F}w_j$.

Example(T 2015). Let $V = \bigoplus_{i=0}^{\infty} \mathbb{F}u_i + \prod_{j=0}^{\infty} \mathbb{F}w_j$ and $\mathcal{L} = \{V_i : i \in \mathbb{N}\} \cup \{0\}$ where $V_n = \bigoplus_{i=n}^{\infty} \mathbb{F}u_i + \prod_{j=n}^{\infty} \mathbb{F}w_j$.

Let $R = \{y \in \text{End}(V) : y(V_i) \subseteq V_{i+1}, \text{ for all } i \in \mathbb{N}\}$. Then $S(\mathcal{L}) = 1 + R$. Let $x \in R$ such that $x(u_i) = w_{i+1}$ and x(W) = 0. Then $1 + x \in S(\mathcal{L})$ but $1 + x \notin F(\mathcal{L})$. It remains to show that $1 + x \in HP(\mathcal{L})$.

Example(T 2015). Let $V = \bigoplus_{i=0}^{\infty} \mathbb{F}u_i + \prod_{j=0}^{\infty} \mathbb{F}w_j$ and $\mathcal{L} = \{V_i : i \in \mathbb{N}\} \cup \{0\}$ where $V_n = \bigoplus_{i=n}^{\infty} \mathbb{F}u_i + \prod_{j=n}^{\infty} \mathbb{F}w_j$.

Let $R = \{y \in \text{End}(V) : y(V_i) \subseteq V_{i+1}, \text{ for all } i \in \mathbb{N}\}$. Then $S(\mathcal{L}) = 1 + R$. Let $x \in R$ such that $x(u_i) = w_{i+1}$ and x(W) = 0. Then $1 + x \in S(\mathcal{L})$ but $1 + x \notin F(\mathcal{L})$. It remains to show that $1 + x \in HP(\mathcal{L})$.

Lemma. Let $y \in R$. There exists a positive integer *m* such that $w_j y \in W$ for all $j \ge m$. It follows that $wy \in W$ for all $w \in W \cap V_m$.

Example(T 2015). Let $V = \bigoplus_{i=0}^{\infty} \mathbb{F}u_i + \prod_{j=0}^{\infty} \mathbb{F}w_j$ and $\mathcal{L} = \{V_i : i \in \mathbb{N}\} \cup \{0\}$ where $V_n = \bigoplus_{i=n}^{\infty} \mathbb{F}u_i + \prod_{j=n}^{\infty} \mathbb{F}w_j$.

Let $R = \{y \in \text{End}(V) : y(V_i) \subseteq V_{i+1}, \text{ for all } i \in \mathbb{N}\}$. Then $S(\mathcal{L}) = 1 + R$. Let $x \in R$ such that $x(u_i) = w_{i+1}$ and x(W) = 0. Then $1 + x \in S(\mathcal{L})$ but $1 + x \notin F(\mathcal{L})$. It remains to show that $1 + x \in HP(\mathcal{L})$.

Lemma. Let $y \in R$. There exists a positive integer *m* such that $w_j y \in W$ for all $j \ge m$. It follows that $wy \in W$ for all $w \in W \cap V_m$.

Corollary. $1 + x \in HP(\mathcal{L})$.

4. A strong local nilpotence property

4. A strong local nilpotence property

Theorem(T 2015). For each finitely generated subgroup $H = \langle h_1, \ldots, h_n \rangle$ of HP(\mathcal{L}), there exists a positive integer d = d(H) such that $[V_{,d}H] = 0$.