Generalized Hultman Numbers, and New Generalized Hultman Numbers and it's connection to Generalized commuting probability

Robert Shwartz Ariel University ISRAEL

March 31, 2016

Generalized Commuting Probability

Let $\pi = \langle \pi_1 \ \pi_2 \ \dots \ \pi_n \rangle$ be a permutation from S_n , and G is a finite group.

Then $Pr_{\pi}(G)$ defined as the probability of

 $Pr(a_1a_2\cdots a_n = a_{\pi_1}a_{\pi_2}\cdots a_{\pi_{n-1}}a_{\pi_n})$ in *G*.

Notice that $Pr_{\langle 2 | 1 \rangle}(G)$ is just the commuting probability of G.

$$Pr^{t}(G) := Pr_{\langle t \ t-1\dots 2 \ 1 \rangle}(G)$$

$$Pr_{\pi}(G) = Pr^{t}(G)$$

where t is a non-negative integer number such that n - t + 1 is the number of alternating cycles in the Hultman decomposition of the cycle graph of the permutation $\pi \in S_n$.

Two directions of generalization

Direction 1: Let G be a finite group, and π be a signed-permutation in B_n . Then,

 $Pr_{\pi}(G) := Pr(a_{1}a_{2}\cdots a_{n} = a_{|\pi_{1}|}^{\epsilon_{1}(\pi)}a_{|\pi_{2}|}^{\epsilon_{2}(\pi)}\cdots a_{|\pi_{n}|}^{\epsilon_{n}(\pi)})$ where for every $1 \leq i \leq n$, $\epsilon_{i} \in \{1, -1\}$ is determined as follows:

- In case $\pi_i > 0$, $\epsilon_i(\pi) = 1$.
- In case $\pi_i < 0$, $\epsilon_i(\pi) = -1$

 $\pi \in B_n$ is positive, in case $\epsilon_i(\pi) = 1$, for every $1 \le i \le n$. Otherwise π is non-positive.

$$Pr^{-t}(G) := Pr_{\langle -1 \ -2 \cdots -(t-1) \ -t \rangle}(G) =$$
$$= Pr(a_1a_2 \cdots a_t = a_1^{-1}a_2^{-1} \cdots a_t^{-1}) =$$
$$= Pr(a_1^2 \cdot a_2^2 \cdots a_t^2 = 1)$$

For every non-positive π ,

$$Pr_{\pi}(G) = Pr^{-t}(G)$$

where t is a non-negative integer number such that n-t+1 is the number of generalized alternating cycles in the Generalized Hultman decomposition of the cycle graph of the signedpermutation $\pi \in B_n$. There are two interesting cases:

Ambivalent Groups: In case of G is a finite ambivalent group, $Pr^{-2k}(G) = Pr^{2k}(G)$, for every integer $k \leq 0$. Therefore,

$$Pr_{\pi}(G) = Pr^{\theta}(G)$$

if and only if π and θ have the same number of generalized alternating cycles in the Generalized Hultman decomposition, without depending on weather π or θ is positive or nonpositive.

Groups of odd order: In case of *G* is a finite group, which order is odd, $Pr^{-k}(G) = \frac{1}{|G|}$, for every integer $k \ge 1$.

Direction 2: Let G be a finite group, b be an involution in G, and π be a signed-permutation in B_n . Then,

 $Pr_{\pi,b}(G) := Pr(a_1a_2 \cdots a_n = a_{|\pi_1|}^{\epsilon_1(\pi)} a_{|\pi_2|}^{\epsilon_2(\pi)} \cdots a_{|\pi_n|}^{\epsilon_n(\pi)})$ where for every $1 \le i \le n$, $\epsilon_i \in \{1, b\}$ is determined as follows:

- In case $\pi_i > 0$, $\epsilon_i(\pi) = 1$.
- In case $\pi_i < 0$, $\epsilon_i(\pi) = b$

For every non-negative integers k, l: $Pr_b^{2k,0}(G) := Pr^{2k}(G)$

$$Pr_b^{2k,l}(G) :=$$

$$Pr(\prod_{i=1}^{2k+2l} a_i = \prod_{i=2k}^{l} a_i \cdot \prod_{i=1}^{l} a_{2k+2i-1} \cdot a_{2k+2i}) =$$

$$= Pr(\prod_{i=1}^{k} [a_{2i-1}, a_{2i}]] = \prod_{i=1}^{2l} b^{a_{2k+i}})$$

 $Pr_{b_1}^{2k,l}(G) = Pr_{b_2}^{2k,l}(G)$, for every non-negative integers k, l, in case b_1 and b_2 are conjugate involutions.

7

New Generalized Hultman Decomposition:

Let $\pi \in B_n$. then look at the set H_n of 2n + 2 vertices named by

$$H_n = \{0, 1, ..., n\}$$

$$(i+) := (i+1) \mod (n+1),$$

 $(i-) := (i-1) \mod (n+1).$

There are black-edges connecting $i \rightarrow i+$, for every $i \in H_n$.

There are gray-edges connecting $\pi(i) \rightarrow \pi(i-)$ for every $i \in H_n$. The gray-edges are labeled by + or - as follows:

- In case both π and π(i-) are positive or negative:
 The gray-edge connecting π(i) to π(i-) is labeled by +.
- In case only π(i) or π(i-) is positive: The gray-edge connecting π(i) to π(i-) is labeled by -.

The cycle graph $Gr(\phi)$ of a signed permutation $\pi \in B_n$ is the bi-colored directed labeled graph.

- An "alternating negative cycle" is a cycle where black edges are followed by gray alternately, and there are odd number of edges which are labeled by -.
- An "alternating positive cycle" is a cycle where a black edge followed by a gray alternately, and there are even number of edges which are labeled by -.

- Let $s^+(\pi)$ be the number of the alternating positive cycles of $Gr(\pi)$.
- Let $s^{-}(\pi)$ be the number of the alternating negative cycles of $Gr(\pi)$.

• Let
$$s(\pi) = s^+(\pi) + \frac{s^-(\pi)}{2}$$
.

Theorem: Let G be a finite group, $b \in G$ an involution, $\pi \in B_n$, then:

$$Pr_{\pi,b}(G) = Pr_b^{2k,l}(G),$$

where

$$l=\frac{s^{-}(\pi)}{2},$$

and

$$2k = n - s^{+}(\pi) - s^{-}(\pi) + 1.$$

and therefore,

$$2k + l = n - s(\pi) + 1.$$