Generalized Hultman Numbers,

 and New Generalized HultmanNumbers and it's connection to
Generalized commuting probability

Robert Shwartz
Ariel University
ISRAEL

March 31, 2016

Generalized Commuting Probability

Let $\pi=\left\langle\begin{array}{llll}\pi_{1} & \pi_{2} & \ldots & \pi_{n}\end{array}\right\rangle$ be a permutation from S_{n}, and G is a finite group.

Then $\operatorname{Pr}_{\pi}(G)$ defined as the probability of

$$
\operatorname{Pr}\left(a_{1} a_{2} \cdots a_{n}=a_{\pi_{1}} a_{\pi_{2}} \cdots a_{\pi_{n-1}} a_{\pi_{n}}\right)
$$

in G.

Notice that $\operatorname{Pr}_{\langle 21\rangle}(G)$ is just the commuting probability of G.

$$
\operatorname{Pr}^{t}(G):=\operatorname{Pr}_{\langle t \quad t-1 \ldots 21\rangle}(G)
$$

$$
\operatorname{Pr}_{\pi}(G)=\operatorname{Pr}^{t}(G)
$$

where t is a non-negative integer number such that $n-t+1$ is the number of alternating cycles in the Hultman decomposition of the cycle graph of the permutation $\pi \in S_{n}$.

Two directions of generalization

Direction 1: Let G be a finite group, and π be a signed-permutation in B_{n}. Then, $\operatorname{Pr}_{\pi}(G):=\operatorname{Pr}\left(a_{1} a_{2} \cdots a_{n}=a_{\left|\pi_{1}\right|}^{\epsilon_{1}(\pi)} a_{\left|\pi_{2}\right|}^{\epsilon_{2}(\pi)} \cdots a_{\left|\pi_{n}\right|}^{\epsilon_{n}(\pi)}\right)$ where for every $1 \leq i \leq n, \epsilon_{i} \in\{1,-1\}$ is determined as follows:

- In case $\pi_{i}>0, \epsilon_{i}(\pi)=1$.
- In case $\pi_{i}<0, \epsilon_{i}(\pi)=-1$
$\pi \in B_{n}$ is positive, in case $\epsilon_{i}(\pi)=1$, for every $1 \leq i \leq n$. Otherwise π is non-positive.

$$
\begin{aligned}
& \left.\operatorname{Pr}^{-t}(G):=\operatorname{Pr}_{\langle-1}-2 \cdots-(t-1)-t\right\rangle \\
& =\operatorname{Pr}\left(a_{1} a_{2} \cdots a_{t}=a_{1}^{-1} a_{2}^{-1} \cdots a_{t}^{-1}\right)= \\
& =\operatorname{Pr}\left(a_{1}^{2} \cdot a_{2}^{2} \cdots a_{t}^{2}=1\right)
\end{aligned}
$$

For every non-positive π,

$$
\operatorname{Pr}_{\pi}(G)=\operatorname{Pr}^{-t}(G)
$$

where t is a non-negative integer number such that $n-t+1$ is the number of generalized alternating cycles in the Generalized Hultman decomposition of the cycle graph of the signedpermutation $\pi \in B_{n}$.

There are two interesting cases:

Ambivalent Groups: In case of G is a finite ambivalent group, $\operatorname{Pr}^{-2 k}(G)=\operatorname{Pr}^{2 k}(G)$, for every integer $k \leq 0$. Therefore,

$$
\operatorname{Pr}_{\pi}(G)=\operatorname{Pr}^{\theta}(G)
$$

if and only if π and θ have the same number of generalized alternating cycles in the Generalized Hultman decomposition, without depending on weather π or θ is positive or nonpositive.

Groups of odd order: In case of G is a finite group, which order is odd, $\operatorname{Pr}^{-k}(G)=\frac{1}{|G|}$, for every integer $k \geq 1$.

Direction 2: Let G be a finite group, b be an involution in G, and π be a signed-permutation in B_{n}. Then,
$\operatorname{Pr}_{\pi, b}(G):=\operatorname{Pr}\left(a_{1} a_{2} \cdots a_{n}=a_{\left|\pi_{1}\right|}^{\epsilon_{1}(\pi)} a_{\left|\pi_{2}\right|}^{\epsilon_{2}(\pi)} \cdots a_{\left|\pi_{n}\right|}^{\epsilon_{n}(\pi)}\right)$
where for every $1 \leq i \leq n, \epsilon_{i} \in\{1, b\}$ is determined as follows:

- In case $\pi_{i}>0, \epsilon_{i}(\pi)=1$.
- In case $\pi_{i}<0, \epsilon_{i}(\pi)=b$

For every non-negative integers k, l :

$$
\operatorname{Pr}_{b}^{2 k, 0}(G):=\operatorname{Pr}^{2 k}(G)
$$

$$
\operatorname{Pr}_{b}^{2 k, l}(G):=
$$

$$
\begin{aligned}
& \operatorname{Pr}\left(\prod_{i=1}^{2 k+2 l} a_{i}=\prod_{i=2 k}^{1} a_{i} \cdot \prod_{i=1}^{l} a_{2 k+2 i-1}^{b} \cdot a_{2 k+2 i}\right)= \\
& \quad=\operatorname{Pr}\left(\prod_{i=1}^{k}\left[a_{2 i-1}, a_{2 i}\right]=\prod_{i=1}^{2 l} b^{a_{2 k+i}}\right)
\end{aligned}
$$

$\operatorname{Pr}_{b_{1}}^{2 k, l}(G)=\operatorname{Pr}_{b_{2}}^{2 k, l}(G)$, for every non-negative integers k, l, in case b_{1} and b_{2} are conjugate involutions.

New Generalized Hultman Decomposition:

Let $\pi \in B_{n}$. then look at the set H_{n} of $2 n+2$ vertices named by

$$
H_{n}=\{0,1, \ldots, n\}
$$

$(i+):=(i+1) \bmod (n+1)$,
$(i-):=(i-1) \bmod (n+1)$.

There are black-edges connecting $i \rightarrow i+$, for every $i \in H_{n}$.

There are gray-edges connecting $\pi(i) \rightarrow \pi(i-)$ for every $i \in H_{n}$.

The gray-edges are labeled by + or - as follows:

- In case both π and $\pi(i-)$ are positive or negative:
The gray-edge connecting $\pi(i)$ to $\pi(i-)$ is labeled by + .
- In case only $\pi(i)$ or $\pi(i-)$ is positive:

The gray-edge connecting $\pi(i)$ to $\pi(i-)$ is labeled by -.

The cycle graph $G r(\phi)$ of a signed permutation $\pi \in B_{n}$ is the bi-colored directed labeled graph.

- An "alternating negative cycle" is a cycle where black edges are followed by gray alternately, and there are odd number of edges which are labeled by - .
- An "alternating positive cycle" is a cycle where a black edge followed by a gray alternately, and there are even number of edges which are labeled by - .
- Let $s^{+}(\pi)$ be the number of the alternating positive cycles of $G r(\pi)$.
- Let $s^{-}(\pi)$ be the number of the alternating negative cycles of $G r(\pi)$.
- Let $s(\pi)=s^{+}(\pi)+\frac{s^{-}(\pi)}{2}$.

Theorem: Let G be a finite group, $b \in G$ an involution, $\pi \in B_{n}$, then:

$$
\operatorname{Pr}_{\pi, b}(G)=\operatorname{Pr}_{b}^{2 k, l}(G)
$$

where

$$
l=\frac{s^{-}(\pi)}{2},
$$

and

$$
2 k=n-s^{+}(\pi)-s^{-}(\pi)+1
$$

and therefore,

$$
2 k+l=n-s(\pi)+1
$$

