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Various notions related to the length of a finite group have been
introduced in the context of the Restricted Burnside Problem.

Therefore I would like to start with a few words on the RBP. There
are several equivalent ways to formulate it.
1. Let m, e be positive integers. Is the order of any m-generated
finite group of exponent e bounded in terms of m and e only?
2. Is every residually finite group of finite exponent locally finite?
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A very important step in the eventual solution of the RBP was
made in 1956 by Hall and Higman.

They reduced the problem to the case where n is a prime-power.
Thus, the problem was shown to be about nilpotent groups.
One advantage of working with nilpotent groups is that they admit
a treatment via Lie algebras.
The Lie-theoretical part of the RBP was solved by Zelmanov in the
late eighties. We will now discuss in some detail the contribution
of Hall and Higman.
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Let p be a prime. A finite group G is p-soluble iff G possesses a
normal series all of whose quotients are either p-groups or
p′-groups.

In view of the Feit-Thompson Theorem any 2-soluble
group is soluble. Also it is easy to check that a finite soluble group
is p-soluble for any prime p.
If G is p-soluble, then the minimal possible number of p-factors in
a normal series all of whose quotients are either p- or p′-groups is
called the p-length of G and is denoted by lp(G ).
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A related concept is that of the Fitting height of G .

This is
denoted by h(G ). Given a finite soluble group G , the Fitting
height of G is the minimal length of a normal series with nilpotent
quotients. It is clear that G is nilpotent iff h(G ) = 1.
Very often, once we know that at least one of the parameters h(G )
or lp(G ) is bounded, a problem on soluble groups is reduced to the
nilpotent case.
The general (nonsoluble) case requires the concept of nonsoluble
length of a finite group.
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Every finite group G has a normal series each of whose factors
either is soluble or is a direct product of nonabelian simple groups.

We define the nonsoluble length λ(G ) as the number of nonsoluble
factors in a shortest series of this kind.
For any prime p, we have a similar notion of non-p-soluble length
λp(G ). Every finite group G has a normal series each of whose
factors either is p-soluble or is a direct product of nonabelian
simple groups of orders divisible by p. Then λp(G ) is the number
of non-p-soluble factors in a shortest series of this kind. Of course,
λ(G ) = λ2(G ), since groups of odd order are soluble by the
Feit–Thompson theorem.
The following theorem originates from the work of Hall and
Higman on the RBP.
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Let ep(G ) be the least positive integer such that a Sylow
p-subgroup P of G has exponent pep(G) and let dp(G ) be the
derived length of P.

If G is p-soluble, then
(a) lp(G ) ≤ dp(G ),
(b) lp(G ) ≤ ep(G ) if p is not a Fermat prime,
(c) lp(G ) ≤ 2ep(G ) if p is a Fermat prime.

Hall and Higman proved this for p odd. The case p = 2 was
proved by Bryukhanova in 1979 and 1981.
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Now it is easy to show that if G is a finite soluble group of
exponent e, then h(G ) is e-bounded.

Another result that was
obtained in the Hall-Higman paper (but was used implicitly) is as
follows.

Let G be a finite group and p ∈ π(G ). Then λp(G ) ≤ ep(G ).

The proof of this fact was very short (just a few lines). The
Schreier conjecture that Aut S/Inn S is soluble for every
nonabelian finite simple group S was used in the proof.
Subsequently the conjecture was confirmed by the classification of
finite simple groups.
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Hall and Higman also conjectured that there are only finitely many
finite simple groups of any given exponent e.

This was
subsequently confirmed by the classification.

The combination of these ideas led to the reduction of the RBP to
the case where G is nilpotent.
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A generalization of The Restricted Burnside Problem

In 1999 we proved the following result.

Theorem. Let n be a p-power and G a residually finite group in
which all commutators [x , y ] have order dividing n. Then G ′ is
locally finite.

This fails if the assumption of residual finiteness is dropped.
If G is not residually finite, G ′ need not even be periodic! (Adian,
Deryabina – Kozhevnikov)
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A generalization of The Restricted Burnside Problem

It is natural to look at some questions related to the theorem.

In particular we do not know whether G ′ can have infinite
exponent.
Another natural question is for which verbal subgroups of G a
similar phenomenon holds.
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A generalization of The Restricted Burnside Problem

Given a group-word w in variables x1, . . . , xt we think of it
primarily as a function of t variables defined on any given group G .
We denote by w(G ) the verbal subgroup of G generated by the
values of w .

PROBLEM: Let n be a positive integer and w a word. Assume
that G is a residually finite group such that any w-value in G has
order dividing n. Does it follow that the verbal subgroup w(G ) is
locally finite?

The solution to the RBP shows that the answer to Problem is
positive if w = x .
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A generalization of The Restricted Burnside Problem

A word w is called a multilinear commutator if it has form of a
multilinear Lie monomial.

Particular examples of multilinear commutators are the derived
words, defined by the equations:

δ0(x) = x ,

δk(x1, . . . , x2k ) = [δk−1(x1, . . . , x2k−1), δk−1(x2k−1+1 . . . , x2k )],

and the lower central words:

γ1(x) = x ,

γk+1(x1, . . . , xk+1) = [γk(x1, . . . , xk), xk+1].
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THEOREM (2002). Let w be a multilinear commutator and n a
prime-power. Suppose that G is a residually finite group satisfying
the identity wn ≡ 1. Then the verbal subgroup w(G ) is locally
finite.
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Thus, we are relatively successful in dealing with the case where n
is a prime-power. This is because Zelmanov’s Lie-theoretic results
are are so powerful in applications to nilpotent groups.

However
the general case remains hard to crack.

Unfortunately, it is unclear how the Hall-Higman theory can be
used to deal with our problems.
For example, it is an open question whether the Fitting height of a
finite soluble group satisfying the identity [x , y ]n ≡ 1 is bounded in
terms of n.
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Using a mixture of some other tools (results and ideas of P. Flavell,
Nikolov-Segal theorem that in a finitely generated profinite group
every subgroup of finite index is open,...) in 2009 we proved:

If w is a multilinear commutator and G a finite soluble group in
which every product of at most 896 w -values has order dividing n,
then h(G ) is bounded by a function of w and n only.
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Very recently (2013) Khukhro and I proved the following results.

The nonsoluble length λ(G ) of G does not exceed 2L2 + 1, where
L2 is the maximum 2-length of soluble subgroups of G .

For p 6= 2, the non-p-soluble length λp(G ) of G does not exceed
the maximum p-length of p-soluble subgroups of G .

The nonsoluble length λ(G ) of G does not exceed the maximum
Fitting height of soluble subgroups of G .

Unlike the situation considered by Hall and Higman, the proofs of
these results are pretty complicated. The Schreier conjecture is
used in the proofs again (so the proofs depend on the classification
of finite simple groups).
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From this we deduce the following surprizing theorem.

Let w be a multilinear commutator and n a positive integer.
Suppose that G is a residually finite group in which every product
of at most 896 w-values has order dividing n. Then the verbal
subgroup w(G ) is locally finite.

This can be deduced from the results on lenth of a finite group
more or less like the solution of the RBP was.
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In the seventies H. Bender introduced the concept of a generalized
Fitting subgroup of G .

The usual notation for it is F ∗(G ). Recall
that F ∗(G ) is the product of the Fitting subgroup F (G ) and all
subnormal quasisimple subgroups; here a group is quasisimple if it
is perfect and its quotient by the centre is a non-abelian simple
group.
The group G is called quasinilpotent if G = F ∗(G ). The least
number h such that G possesses a normal series with
quasinilpotent quotients is called the generalized Fitting height
h∗(G ) of G . Clearly, if G is soluble, then h∗(G ) = h(G ) is the
ordinary Fitting height of G . Since λ(F ∗(G )) = 1, we have
λ(G ) ≤ h∗(G ) for any finite group G .
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FACTORIZABLE GROUPS

If a finite group G = AB is a product of two subgroups A,B, then
it is natural to expect restrictions on the structure of G in terms
of A and B.
The following theorem was recently proved by Casolo, Jabara, and
Spiga.

Theorem

Let G = AB be a finite soluble group factorised by its proper
subgroups A and B with gcd(|A|, |B|) = 1. Then
h(G ) ≤ h(A) + h(B) + 4d(B)− 1. Moreover, if |B| is odd, then
h(G ) ≤ h(A) + h(B) + 2d(B)− 1, and if B is nilpotent, then
h(G ) ≤ h(A) + 2d(B).
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It is natural to ask if, given G = AB, where (|A|, |B|) = 1, the
length λ(G ) is bounded in terms of λ(A) and λ(B).

The answer is ”NO”.

Indeed, let G = A5. Then G = AB where |A| = 12 and |B| = 5.
Now let Gi be the wreath product (. . . (G o G ) o . . .G ) o G with i
factors.
Let Ai be a Hall {2, 3}-subgroup of Gi and Bi be a Sylow
5-subgroup of Gi . Then Gi = AiBi with λ(Gi ) = i while
λ(Ai ) = λ(Bi ) = 0.
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In a recent work with Khukhro we proved the following results.

Theorem

Suppose that a finite group G = AB admits a factorization by two
subgroups A, B of coprime orders. Then the nonsoluble
length λ(G ) of G is bounded in terms of the generalized Fitting
heights h∗(A) and h∗(B) of the factors. More precisely,
λ(G ) ≤ 2h

∗(A)+h∗(B) − 1.

Theorem

Suppose that a finite group G = AB admits a factorization by two
subgroups A, B of coprime orders, of which B is soluble of derived
length d. Then the generalized Fitting height h∗(G ) of G is
bounded in terms of d and h∗(A).
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LENGTH OF GROUPS WITH AUTOMORPHISMS

The following theorem of Thompson is famous.

Theorem

Suppose that a finite soluble group G admits a soluble group of
automorphisms A of coprime order. Assume that |A| is a product
of n primes, counting multiplicities. Then h(G ) ≤ 5nh(CG (A)).

This was proved in 1964. Then a lot of related work was done. In
1984 Turull obtained the best possible bound –
h(G ) ≤ 2n + h(CG (A)).
In a recent work with Khukhro we proved results for the case
where G is nonsoluble.

Pavel Shumyatsky Measuring the length of a finite group



LENGTH OF GROUPS WITH AUTOMORPHISMS

The following theorem of Thompson is famous.

Theorem

Suppose that a finite soluble group G admits a soluble group of
automorphisms A of coprime order. Assume that |A| is a product
of n primes, counting multiplicities. Then h(G ) ≤ 5nh(CG (A)).

This was proved in 1964. Then a lot of related work was done. In
1984 Turull obtained the best possible bound –
h(G ) ≤ 2n + h(CG (A)).
In a recent work with Khukhro we proved results for the case
where G is nonsoluble.

Pavel Shumyatsky Measuring the length of a finite group



LENGTH OF GROUPS WITH AUTOMORPHISMS

The following theorem of Thompson is famous.

Theorem

Suppose that a finite soluble group G admits a soluble group of
automorphisms A of coprime order. Assume that |A| is a product
of n primes, counting multiplicities. Then h(G ) ≤ 5nh(CG (A)).

This was proved in 1964. Then a lot of related work was done. In
1984 Turull obtained the best possible bound –
h(G ) ≤ 2n + h(CG (A)).
In a recent work with Khukhro we proved results for the case
where G is nonsoluble.

Pavel Shumyatsky Measuring the length of a finite group



LENGTH OF GROUPS WITH AUTOMORPHISMS

The following theorem of Thompson is famous.

Theorem

Suppose that a finite soluble group G admits a soluble group of
automorphisms A of coprime order. Assume that |A| is a product
of n primes, counting multiplicities. Then h(G ) ≤ 5nh(CG (A)).

This was proved in 1964. Then a lot of related work was done.

In
1984 Turull obtained the best possible bound –
h(G ) ≤ 2n + h(CG (A)).
In a recent work with Khukhro we proved results for the case
where G is nonsoluble.

Pavel Shumyatsky Measuring the length of a finite group



LENGTH OF GROUPS WITH AUTOMORPHISMS

The following theorem of Thompson is famous.

Theorem

Suppose that a finite soluble group G admits a soluble group of
automorphisms A of coprime order. Assume that |A| is a product
of n primes, counting multiplicities. Then h(G ) ≤ 5nh(CG (A)).

This was proved in 1964. Then a lot of related work was done. In
1984 Turull obtained the best possible bound –
h(G ) ≤ 2n + h(CG (A)).

In a recent work with Khukhro we proved results for the case
where G is nonsoluble.

Pavel Shumyatsky Measuring the length of a finite group



LENGTH OF GROUPS WITH AUTOMORPHISMS

The following theorem of Thompson is famous.

Theorem

Suppose that a finite soluble group G admits a soluble group of
automorphisms A of coprime order. Assume that |A| is a product
of n primes, counting multiplicities. Then h(G ) ≤ 5nh(CG (A)).

This was proved in 1964. Then a lot of related work was done. In
1984 Turull obtained the best possible bound –
h(G ) ≤ 2n + h(CG (A)).
In a recent work with Khukhro we proved results for the case
where G is nonsoluble.

Pavel Shumyatsky Measuring the length of a finite group



Theorem

Suppose that a finite group G admits a soluble group of
automorphisms A of coprime order. Then its generalized Fitting
height h∗(G ) is bounded in terms of the generalized Fitting height
h∗(CG (A)) of the fixed-point subgroup CG (A) and the number of
prime factors of |A| counting multiplicities.

The bound for h∗(G ) that can be computed following the proof of
the above theorem is something like

9n · h∗(CG (A)).

It would be interesting to see if this bound can be improved
(perhaps it should be linear?).
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We also proved a similar result for the nonsoluble length.

Theorem

Suppose that a finite group G admits a group of automorphisms A
of coprime order. Then its nonsoluble length λ(G ) is bounded in
terms of the nonsoluble length λ(CG (A)) of the fixed-point
subgroup CG (A) and the number of prime factors of |A| counting
multiplicities.

The proof produces the bound λ(G ) ≤ 2n(λ(CG (A)) + 1)− 1.
Again, future improvements of this bound are likely. The proofs of
the theorems use the following consequences of the classification:

the validity of Schreier’s conjecture and

the result of Wang and Chen that in a finite simple group the
fixed-point subgroup of an automorphism of coprime order cannot
be a nilpotent group.
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IDENTITIES IN SYLOW SUBGROUPS

There is a long-standing problem on p-length due to Wilson
(problem 9.68 in Kourovka Notebook ): for a given prime p and a
given proper group variety X , is there a bound for the p-length of
finite p-soluble groups whose Sylow p-subgroups belong to X ?

Recall that variety is a class of groups defined by equations. More
precisely, if W is a set of words in x1, x2, . . . , the class of all groups
G such that W (G ) = 1 is called the variety determined by W . By
a well-known theorem of Birkhoff varieties are precisely classes of
groups closed with respect to taking quotients, subgroups and
Cartesian products of their members.
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For example, the class of all abelian groups is a variety determined
by the identity [x , y ] ≡ 1.

The class of all groups of exponent e is
a variety determined by the identity xe ≡ 1.
If X and Y are varieties of groups, we denote by XY the class of
all groups G having a normal subgroup N such that N ∈ X and
G/N ∈ Y . It is well-known that XY is again a variety.
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Wilson’s problem so far has seen little progress beyond what was
done in the Hall-Higman paper.

It is known that the problem has
affirmative answers for soluble varieties and varieties of bounded
exponent (and, implicit in the Hall–Higman theorems, for
(n-Engel)-by-(finite exponent) varieties). The next step would be
some combination of solubility and exponent, but, for example,
Wilson’s problem remains open for (finite exponent)-by-soluble or
soluble-by-(finite exponent) varieties.
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We state a problem on non-p-soluble length by analogy with
Wilson’s problem.

For a given prime p and a given proper group variety X , is there a
bound for the non-p-soluble length λp of finite groups whose Sylow
p-subgroups belong to X ?

By the above mentioned results an affirmative answer to this
Problem would follow from an affirmative answer to Wilson’s
problem. But our Problem may be more tractable than Wilson’s.

Theorem: Let p be a prime and let X be a variety that is a
product of several soluble varieties and varieties of finite exponent.
Then the non-p-soluble length λp(G ) of finite groups whose Sylow
p-subgroups belong to X is bounded.
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We will now state the latest result in this direction. It was
obtained in a joint work with Yerko Contreras Rojas.

Theorem: Let p an odd prime and w a multilinear commutator
word of weight n. Let P be a Sylow p-subgroup of a finite group G
and assume that all w -values on elements of P have order dividing
pe . Then λp(G ) ≤ n + e − 1.

In the case of w = [x , y ] the result is known to hold also for p = 2.
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