# A GROUP THEORETICAL PROBLEM INSPIRED BY THE ČERNÝ CONJECTURE 

Péter P. Pálfy<br>Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences and Eötvös University, Budapest

Ischia, April 1, 2016

## The Černý Conjecture

Jan Černý, Poznámka k homogénnym experimentom s konečnými automatmi, Matematicko-fyzikálny Časopis 14 (1964) 208-216.

Conjecture: For any synchronizing automaton with $n$ states there exists a synchronizing word of length at most $(n-1)^{2}$.

## The Černý Conjecture

Jan Černý, Poznámka k homogénnym experimentom s konečnými automatmi, Matematicko-fyzikálny Časopis 14 (1964) 208-216.

Conjecture: For any synchronizing automaton with $n$ states there exists a synchronizing word of length at most $(n-1)^{2}$.

In common algebraic terms:
Let $f_{1}, \ldots, f_{k}$ be self-maps (transformations) of the $n$-element set. Consider the transformation semigroup $T=\left\langle f_{1}, \ldots, f_{k}\right\rangle$ generated by them. Assume that $T$ contains a constant map. Then there exists a product $f_{i_{1}} \cdots f_{i_{\ell}}$ of word length $\ell \leq(n-1)^{2}$ that is a constant map.

## Černý's example

Let $a$ be the cyclic permutation $a=(0,1,2, \ldots, n-1)$ and let $b$ be the transformation mapping 0 to 1 and fixing every other element. Then the unique shortest word in $a$ and $b$ that gives a constant map is $b a^{n-1} b a^{n-1} b \cdots b a^{n-1} b$ of length $(n-2) n+1=(n-1)^{2}$.

## Černý's example

Let $a$ be the cyclic permutation $a=(0,1,2, \ldots, n-1)$ and let $b$ be the transformation mapping 0 to 1 and fixing every other element. Then the unique shortest word in $a$ and $b$ that gives a constant map is $b a^{n-1} b a^{n-1} b \cdots b a^{n-1} b$ of length $(n-2) n+1=(n-1)^{2}$.

Sketch of proof. Consider the images after $k$ steps
$I_{k}=\{0,1, \ldots, n-1\} f_{i_{1}} f_{i_{2}} \ldots f_{i_{k}}, k=0,1,2, \ldots, \ell$ and work backwards. By assumption $\left|I_{\ell}\right|=1$ and $\left|I_{\ell-1}\right|>1$. Hence the last factor collapses at least two elements of $I_{\ell-1}$, so

$$
f_{i_{\ell}}=b, I_{\ell}=\{1\}, I_{\ell-1}=\{0,1\} .
$$

The image of $b$ does not contain 0 , hence

$$
f_{\ell-1}=a, I_{\ell-2}=\{n-1,0\}
$$

## the proof continues

$$
f_{\ell-2}=a, I_{\ell-3}=\{n-2, n-1\} .
$$

These elements are fixed by $b$ (provided $n \geq 3$ ), so by minimality of the word length

$$
f_{\ell-3}=a, I_{\ell-4}=\{n-3, n-2\}
$$

and so on, up till

$$
f_{\ell-(n-1)}=a, I_{\ell-n}=\{1,2\}
$$

Now the previous factor could not have been $a$, since this would mean $I_{\ell-n-1}=\{0,1\}=I_{\ell-1}$, contradicting the minimality of the word. Hence

$$
f_{\ell-n}=b, \quad\{0,2\} \subseteq I_{\ell-n-1} \subseteq\{0,1,2\} .
$$

Continuing the same way backwards, we get the result.

## A cubic upper bound

Now we turn to the general problem. Instead of finding a global optimum, we consider the question of starting with a subset $X$ and trying to estimate the length of a word $f_{i_{1}} \cdots f_{i_{m}}$ such that $\left|X f_{i_{1}} \ldots f_{i_{m}}\right|<|X|=\left|X f_{i_{1}} \ldots f_{i_{m-1}}\right|$.

## A cubic upper bound

Now we turn to the general problem. Instead of finding a global optimum, we consider the question of starting with a subset $X$ and trying to estimate the length of a word $f_{i_{1}} \cdots f_{i_{m}}$ such that $\left|X f_{i_{1}} \ldots f_{i_{m}}\right|<|X|=\left|X f_{i_{1}} \ldots f_{i_{m-1}}\right|$.

Define $X_{j}=X f_{i_{1}} \ldots f_{i_{j}}, j=0,1, \ldots, m-1$. Let $Y_{m-1} \subseteq X_{m-1}$ be a 2-element subset collapsed by $f_{i_{m}}$, and take its preimages $Y_{j} \subseteq X_{j}$ with $Y_{j} f_{j+1}=Y_{j+1}$. Observe that $Y_{0}, \ldots, Y_{m-1}$ are pairwise distinct. Indeed, if $Y_{j}=Y_{r}(0 \leq j<r \leq m-1)$, then $\left|X f_{i_{1}} \ldots f_{i_{j}} f_{i_{r+1}} \ldots f_{i_{m}}\right|<|X|$ contrary to the minimality. Thus $m \leq\binom{ n}{2}$, and so the length of a constant product (synchronizing word) is at most

$$
(n-1)\binom{n}{2}=\frac{1}{2} n(n-1)^{2}
$$

## Pin's observation

Jean-Éric Pin, On two combinatorial problems arising from automata theory, Ann. Discrete Math. 17 (1983), 535-548.

Notice that by the same reason $X_{j} \nsupseteq Y_{r}$ for $j<r$.
For aesthetical purposes it is better to consider the complements of the sets $X_{j}$, call them $A_{j}$. Moreover, instead of just 2-element sets $Y_{j}$, we may consider sets of arbitrary (but uniform size) $B_{j}$.

Now the following combinatorial problem arises: Let $A_{0}, \ldots, A_{m-1}$ be finite sets of size $a$, $B_{0}, \ldots, B_{m-1}$ sets of size $b$. Assume that
(0) $A_{i}$ and $B_{i}$ are disjoint for each $i=0, \ldots, m-1$, but
(1) $A_{i}$ and $B_{j}$ have a nonempty intersection for each pair of indices $i<j$.
Give an upper bound for $m$.

## Pin's Conjecture

Pin conjectured that under these assumptions the length of the sequence $\left(A_{0}, B_{0}\right), \ldots,\left(A_{m-1}, B_{m-1}\right)$ satisfies

$$
m \leq\binom{ a+b}{b}=\frac{(a+b)!}{a!b!}
$$

## Pin's Conjecture

Pin conjectured that under these assumptions the length of the sequence $\left(A_{0}, B_{0}\right), \ldots,\left(A_{m-1}, B_{m-1}\right)$ satisfies

$$
m \leq\binom{ a+b}{b}=\frac{(a+b)!}{a!b!}
$$

In Černý's problem $a=n-|X|, b=2$, so it would imply that the length of a synchronizing word is at most

$$
\binom{2}{2}+\binom{3}{2}+\cdots+\binom{n}{2}=\binom{n+1}{3}=\frac{1}{6}\left(n^{3}-n\right) .
$$

## Frankl's Theorem

Péter Frankl, An extremal problem for two families of sets, Eur. J. Comb. 3 (1982), 125-127.

Let $A_{0}, \ldots, A_{m-1}$ be finite sets of size $a$, $B_{0}, \ldots, B_{m-1}$ sets of size $b$. Assume that
(0) $A_{i}$ and $B_{i}$ are disjoint for each $i=0, \ldots, m-1$, but
(1) $A_{i}$ and $B_{j}$ have a nonempty intersection for each pair of indices $i<j$.
Then

$$
m \leq\binom{ a+b}{b}=\frac{(a+b)!}{a!b!}
$$

## Frankl's Theorem

Péter Frankl, An extremal problem for two families of sets, Eur. J. Comb. 3 (1982), 125-127.

Let $A_{0}, \ldots, A_{m-1}$ be finite sets of size $a$, $B_{0}, \ldots, B_{m-1}$ sets of size $b$. Assume that
(0) $A_{i}$ and $B_{i}$ are disjoint for each $i=0, \ldots, m-1$, but
(1) $A_{i}$ and $B_{j}$ have a nonempty intersection for each pair of indices
$i<j$.
Then

$$
m \leq\binom{ a+b}{b}=\frac{(a+b)!}{a!b!}
$$

This yields the best proven general upper bound for the Černý Conjecture: $\frac{1}{6}\left(n^{3}-n\right)$.

## A beautiful proof

The elements that occur in any of the sets $A_{i}, B_{i}$ ( $i=0, \ldots, m-1$ ) will be represented by vectors

$$
\mathbf{v}_{x}=\left(1, x, x^{2}, \ldots, x^{a}\right) \in \mathbb{R}^{a+1}
$$

Notice that any $a+1$ of these vectors are linearly independent.

## A beautiful proof

The elements that occur in any of the sets $A_{i}, B_{i}$ $(i=0, \ldots, m-1)$ will be represented by vectors

$$
\mathbf{v}_{x}=\left(1, x, x^{2}, \ldots, x^{a}\right) \in \mathbb{R}^{a+1}
$$

Notice that any $a+1$ of these vectors are linearly independent. For each a-element set $A_{i}$ take a normal vector $\mathbf{u}_{i}$ of the subspace $\left\langle\mathbf{v}_{x} \mid x \in A_{i}\right\rangle$ of codimension 1.
Notice that $\left\langle\mathbf{u}_{i}, \mathbf{v}_{x}\right\rangle=0 \Longleftrightarrow x \in A_{i}$.

## A beautiful proof

The elements that occur in any of the sets $A_{i}, B_{i}$ $(i=0, \ldots, m-1)$ will be represented by vectors

$$
\mathbf{v}_{x}=\left(1, x, x^{2}, \ldots, x^{a}\right) \in \mathbb{R}^{a+1}
$$

Notice that any $a+1$ of these vectors are linearly independent. For each a-element set $A_{i}$ take a normal vector $\mathbf{u}_{i}$ of the subspace $\left\langle\mathbf{v}_{x} \mid x \in A_{i}\right\rangle$ of codimension 1 .
Notice that $\left\langle\mathbf{u}_{i}, \mathbf{v}_{x}\right\rangle=0 \Longleftrightarrow x \in A_{i}$.
For each b-element set $B_{j}$ define a function $F_{j}: \mathbb{R}^{a+1} \rightarrow \mathbb{R}$ by

$$
F_{j}(\mathbf{v})=\prod_{x \in B_{j}}\left\langle\mathbf{v}, \mathbf{v}_{x}\right\rangle .
$$

Then $F_{j}$ is a homogeneous polynomial of degree $b$ in the coordinates of $\mathbf{v}$.

## A beautiful proof

The elements that occur in any of the sets $A_{i}, B_{i}$ $(i=0, \ldots, m-1)$ will be represented by vectors

$$
\mathbf{v}_{x}=\left(1, x, x^{2}, \ldots, x^{a}\right) \in \mathbb{R}^{a+1}
$$

Notice that any $a+1$ of these vectors are linearly independent. For each a-element set $A_{i}$ take a normal vector $\mathbf{u}_{i}$ of the subspace $\left\langle\mathbf{v}_{x} \mid x \in A_{i}\right\rangle$ of codimension 1 .
Notice that $\left\langle\mathbf{u}_{i}, \mathbf{v}_{x}\right\rangle=0 \Longleftrightarrow x \in A_{i}$.
For each $b$-element set $B_{j}$ define a function $F_{j}: \mathbb{R}^{a+1} \rightarrow \mathbb{R}$ by

$$
F_{j}(\mathbf{v})=\prod_{x \in B_{j}}\left\langle\mathbf{v}, \mathbf{v}_{x}\right\rangle
$$

Then $F_{j}$ is a homogeneous polynomial of degree $b$ in the coordinates of $\mathbf{v}$.
We are going to show that the functions $F_{0}, \ldots, F_{m-1}$ are linearly independent.

## proof continued

Now $B_{i}$ and $A_{i}$ are disjoint, hence

$$
F_{i}\left(\mathbf{u}_{i}\right)=\prod_{x \in B_{i}}\left\langle\mathbf{u}_{i}, \mathbf{v}_{x}\right\rangle \neq 0
$$

## proof continued

Now $B_{i}$ and $A_{i}$ are disjoint, hence

$$
F_{i}\left(\mathbf{u}_{i}\right)=\prod_{x \in B_{i}}\left\langle\mathbf{u}_{i}, \mathbf{v}_{x}\right\rangle \neq 0
$$

If $i<j$, then $A_{i}$ and $B_{j}$ have at least one common element, the corresponding vector is orthogonal to $\mathbf{u}_{i}$, and it also occurs in a factor in the definition of $F_{j}$, hence

$$
F_{j}\left(\mathbf{u}_{i}\right)=\prod_{x \in B_{j}}\left\langle\mathbf{u}_{i}, \mathbf{v}_{x}\right\rangle=0
$$

## proof continued

Now $B_{i}$ and $A_{i}$ are disjoint, hence

$$
F_{i}\left(\mathbf{u}_{i}\right)=\prod_{x \in B_{i}}\left\langle\mathbf{u}_{i}, \mathbf{v}_{x}\right\rangle \neq 0
$$

If $i<j$, then $A_{i}$ and $B_{j}$ have at least one common element, the corresponding vector is orthogonal to $\mathbf{u}_{i}$, and it also occurs in a factor in the definition of $F_{j}$, hence

$$
F_{j}\left(\mathbf{u}_{i}\right)=\prod_{x \in B_{j}}\left\langle\mathbf{u}_{i}, \mathbf{v}_{x}\right\rangle=0
$$

This shows that the functions $F_{0}, \ldots, F_{m-1}$ are indeed linearly independent.

## proof continued

Since they are homogeneous polynomials of degree $b$ in $a+1$ variables, their number cannot exceed the dimension of the space of these homogeneous polynomials, that is

$$
m \leq\binom{ a+b}{b}=\frac{(a+b)!}{a!b!}
$$

## Groups, please

Motivated by the previous arguments, I suggest the following group theoretic question:
Let $g_{1}, \ldots, g_{k}$ be permutations of the $n$-element set, let $X$ and $Y$ be subsets of the permuted elements. Find an element $g=g_{i_{1}} \cdots g_{i_{\ell}}$ in the group $G=\left\langle g_{1}, \ldots, g_{k}\right\rangle$ of smallest word length such that $X g \supseteq Y$.

## Groups, please

Motivated by the previous arguments, I suggest the following group theoretic question:
Let $g_{1}, \ldots, g_{k}$ be permutations of the $n$-element set, let $X$ and $Y$ be subsets of the permuted elements. Find an element $g=g_{i_{1}} \cdots g_{i_{\ell}}$ in the group $G=\left\langle g_{1}, \ldots, g_{k}\right\rangle$ of smallest word length such that $X g \supseteq Y$.

Replacing the generators by their inverses, we may formulate the question by requiring $Y g \subseteq X$.
This question can also be motivated by certain puzzles.

## Groups, please

Motivated by the previous arguments, I suggest the following group theoretic question:
Let $g_{1}, \ldots, g_{k}$ be permutations of the $n$-element set, let $X$ and $Y$ be subsets of the permuted elements. Find an element $g=g_{i_{1}} \cdots g_{i_{\ell}}$ in the group $G=\left\langle g_{1}, \ldots, g_{k}\right\rangle$ of smallest word length such that $X g \supseteq Y$.

Replacing the generators by their inverses, we may formulate the question by requiring $Y g \subseteq X$.
This question can also be motivated by certain puzzles.
Replacing $X$ by its complement - as in the Pin-Frankl argument - we may require $Y g \cap X=\emptyset$.

## A Group Theoretic Conjecture

Conjecture. Let $g_{1}, \ldots, g_{k}$ be permutations of the $n$-element set, generating a transitive permutation group $G$. Let $A$ and $B$ be subsets of the set of permuted elements. If $|A||B|<n$, then there exists a permutation $g=g_{i_{1}} \ldots g_{i_{\ell}} \in G$ of word length $\ell \leq|A||B|$ such that $A g \cap B=\emptyset$.

Note that we do not use inverses in words.

## A Group Theoretic Conjecture

Conjecture. Let $g_{1}, \ldots, g_{k}$ be permutations of the $n$-element set, generating a transitive permutation group $G$. Let $A$ and $B$ be subsets of the set of permuted elements. If $|A||B|<n$, then there exists a permutation $g=g_{i_{1}} \ldots g_{i_{\ell}} \in G$ of word length $\ell \leq|A||B|$ such that $A g \cap B=\emptyset$.

Note that we do not use inverses in words.
The assumption $|A||B|<n$ is necessary. Otherwise, we can take an imprimitive group, and $A$ containing a block, $B$ containing at least one element from each block.

## A Group Theoretic Conjecture

Conjecture. Let $g_{1}, \ldots, g_{k}$ be permutations of the $n$-element set, generating a transitive permutation group $G$. Let $A$ and $B$ be subsets of the set of permuted elements. If $|A||B|<n$, then there exists a permutation $g=g_{i_{1}} \ldots g_{i_{\ell}} \in G$ of word length $\ell \leq|A||B|$ such that $A g \cap B=\emptyset$.

Note that we do not use inverses in words.
The assumption $|A||B|<n$ is necessary. Otherwise, we can take an imprimitive group, and $A$ containing a block, $B$ containing at least one element from each block.

If $|A||B|<n$, then there is a $g \in G$ satisfying $A g \cap B=\emptyset$. Namely, by transitivity of $G$, for every pair of elements $a \in A$, $b \in B$, the number of permutations $g \in G$ such that $a g=b$ is $|G| / n$, so the number of permutations $g \in G$ with $A g \cap B \neq \emptyset$ is at most $|A||B||G| / n<|G|$.

## What do I know?

Very little.

## What do I know?

Very little.
There are many cases when we cannot do better than word length $|A||B|$.

## What do I know?

Very little.
There are many cases when we cannot do better than word length $|A||B|$.

Example 1. If $g=(1,2, \ldots, n)$ is a full cycle, $G=\langle g\rangle$ is a cyclic group, $A=\{1,2, \ldots, a\}, B=\{a, 2 a, \ldots, b a\}$, then $A g^{a b} \cap B=\emptyset$, and $a b$ is the smallest exponent (word length) for which it holds.

## What do I know?

Very little.
There are many cases when we cannot do better than word length $|A||B|$.

Example 1. If $g=(1,2, \ldots, n)$ is a full cycle, $G=\langle g\rangle$ is a cyclic group, $A=\{1,2, \ldots, a\}, B=\{a, 2 a, \ldots, b a\}$, then $A g^{a b} \cap B=\emptyset$, and $a b$ is the smallest exponent (word length) for which it holds.

Example 2. Let $G=\langle(1,2),(2,3),(3,4), \ldots,(n-1, n)\rangle$,
$A=\{1,2, \ldots, a\}, B=\{1,2, \ldots, b\}$, then
$g=(a, a+1)(a+1, a+2) \ldots(a+b-1, a+b)$ $(a-1, a)(a, a+1) \ldots(a+b-2, a+b-1) \ldots$ $(1,2)(2,3) \ldots(a, a+1)$
is (one of the) shortest words for which $A g \cap B=\emptyset$ holds.

## Small cases

The case $|A|=1$ is trivial.
By considering lots of cases, I was able to check the validity of the conjecture for the first nontrivial case $|A|=|B|=2$. There are many different sorts of generating permutations when the shortest word has length $4=|A||B|$, so I could not see a general pattern for the extremal cases even for these small values of $|A|$ and $|B|$.

Nevertheless, note that $4<\binom{2+2}{2}-1=5$, so this is already an improvement of the Pin-Frankl bound

## Small cases

The case $|A|=1$ is trivial.
By considering lots of cases, I was able to check the validity of the conjecture for the first nontrivial case $|A|=|B|=2$. There are many different sorts of generating permutations when the shortest word has length $4=|A||B|$, so I could not see a general pattern for the extremal cases even for these small values of $|A|$ and $|B|$.

Nevertheless, note that $4<\binom{2+2}{2}-1=5$, so this is already an improvement of the Pin-Frankl bound by 1 .

## My dream

If the group theoretic conjecture can be proved, then one can hope to get an insight how to improve the current cubic bound on the length of a synchronizing word in Černý's Conjecture. However, since this is based on estimating the number of steps to make an image smaller, this approach cannot provide a global optimum, so it cannot yield a proof of Černý's Conjecture.

Nevertheless, it may give a bound that one needs at most $c n^{2} / k$ steps to map a $k$-element subset to a smaller subset, and so the total length of a constant product (synchronizing word) could be estimated by

$$
c\left(\frac{n^{2}}{n}+\frac{n^{2}}{n-1}+\frac{n^{2}}{n-2}+\ldots \frac{n^{2}}{3}+\frac{n^{2}}{2}\right)<c n^{2} \log n .
$$

But there is a long way to go to reach this conclusion.

## Thanks

I would like to thank the organizers for inviting me, and also for the excellent organization of the conference.

Thanks to all of you: Patrizia, Mercede, Mariagrazia, Carlo, Costantino, Carmine, Chiara, Serena, Maria, and Antonio.

## Thanks

I would like to thank the organizers for inviting me, and also for the excellent organization of the conference.

Thanks to all of you: Patrizia, Mercede, Mariagrazia, Carlo, Costantino, Carmine, Chiara, Serena, Maria, and Antonio.

Thank you for your attention.

