Subgroup Isomorphism Problem and Sylow theorems for units in integral group rings

Leo Margolis University of Stuttgart

Ischia Group Theory 2016 March 29th - April 2nd 2016

Notation and Setting

- G finite group
- $\mathbb{Z}G$ integral group ring over G
- Augmentation map: $\varepsilon : \mathbb{Z}G \to \mathbb{Z}, \ \varepsilon(\sum_{g \in G} z_g g) = \sum_{g \in G} z_g$
- $V(\mathbb{Z}G)$ group of units of augmentation 1, aka normalized units
- The units of $\mathbb{Z}G$ are $\pm V(\mathbb{Z}G)$, i.e. it suffices to study $V(\mathbb{Z}G)$
- For $g \in G$ an element of the form $\pm g$ is called trivial unit.

We want to study the conncetion of finite subgroups of $V(\mathbb{Z}G)$ and G. In general:

- $\exp(V(\mathbb{Z}G)) = \exp(G)$ (Cohen-Livingstone '65)
- $U \leq V(\mathbb{Z}G)$ finite, then |U| divides |G| (Zmud-Kurennoi '67)

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Notation and Setting

- G finite group
- $\mathbb{Z}G$ integral group ring over G
- Augmentation map: $\varepsilon : \mathbb{Z}G \to \mathbb{Z}, \ \varepsilon(\sum_{g \in G} z_g g) = \sum_{g \in G} z_g$
- $V(\mathbb{Z}G)$ group of units of augmentation 1, aka normalized units
- The units of $\mathbb{Z}G$ are $\pm V(\mathbb{Z}G)$, i.e. it suffices to study $V(\mathbb{Z}G)$
- For $g \in G$ an element of the form $\pm g$ is called trivial unit.

We want to study the conncetion of finite subgroups of $V(\mathbb{Z}G)$ and G. In general:

- $\exp(V(\mathbb{Z}G)) = \exp(G)$ (Cohen-Livingstone '65)
- $U \leq V(\mathbb{Z}G)$ finite, then |U| divides |G| (Zmud-Kurennoi '67)

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

G. Higman (in his 1940 thesis, \S 5)

"The theorems we prove are all partial cases of this plausible theorem: A group of units of finite order in R(G, C) is isomorphic to a group of trivial units."

If G is nilpotent, this is true by a result of A. Weiss ('91).

M. Hertweck (in his 1998 thesis)

There exist groups G and H of order $2^{21} \cdot 97^{28}$ and derived length 4 such that $\mathbb{Z}G \cong \mathbb{Z}H$, but $G \ncong H$.

In particular Higmans "plausibel theorem" is not true in general.

通 とう ほ とう ほう

G. Higman (in his 1940 thesis, \S 5)

"The theorems we prove are all partial cases of this plausible theorem: A group of units of finite order in R(G, C) is isomorphic to a group of trivial units."

If G is nilpotent, this is true by a result of A. Weiss ('91).

M. Hertweck (in his 1998 thesis)

There exist groups G and H of order $2^{21} \cdot 97^{28}$ and derived length 4 such that $\mathbb{Z}G \cong \mathbb{Z}H$, but $G \ncong H$.

In particular Higmans "plausibel theorem" is not true in general.

Subgroup Isomorphism Problem (SIP): (W. Kimmerle 2007)

For which finite groups U does the following statement hold: If $V(\mathbb{Z}G)$ contains a subgroup isomorphic to U, for some finite group G, then G contains a subgroup isomorphic to U.

G. Higman (in his 1940 thesis, \S 5)

"The theorems we prove are all partial cases of this plausible theorem: A group of units of finite order in R(G, C) is isomorphic to a group of trivial units."

If G is nilpotent, this is true by a result of A. Weiss ('91).

M. Hertweck (in his 1998 thesis)

There exist groups G and H of order $2^{21} \cdot 97^{28}$ and derived length 4 such that $\mathbb{Z}G \cong \mathbb{Z}H$, but $G \ncong H$.

In particular Higmans "plausibel theorem" is not true in general.

Subgroup Isomorphism Problem (SIP): (W. Kimmerle 2007)

For which finite groups U does the following statement hold: If $V(\mathbb{Z}G)$ contains a subgroup isomorphic to U, for some finite group G, then G contains a subgroup isomorphic to U.

Subgroup Isomorphism Problem

Only known counterexamples to (SIP):

Groups based on Hertweck's counterexamples to the Isomorphism Problem.

Only groups known to satisfy (SIP):

- C_{p^n} for p a prime, Cohen-Livingstone '65
- $C_2 \times C_2$, Kimmerle '06 using the Brauer-Suzuki Theorem
- $C_p \times C_p$ for an odd prime *p*, Hertweck '07, using elementary representation theory
- $C_4 \times C_2$, proof sketched in this talk

These results imply Sylow-like theorems for $\operatorname{V}(\mathbb{Z} {\mathit{G}})$:

• If the Sylow *p*-subgroup of *G* is cylic or isomorphic to $C_p \times C_p$, then any *p*-subgroup of $V(\mathbb{Z}G)$ is isomorphic to a subgroup of *G*.

• If the Sylow 2-subgroup of G is abelian, (generalized) quaternion or dihedral, then any 2-subgroup of $V(\mathbb{Z}G)$ is isomorphic to a subgroup of G.

Subgroup Isomorphism Problem

Only known counterexamples to (SIP):

Groups based on Hertweck's counterexamples to the Isomorphism Problem.

Only groups known to satisfy (SIP):

- C_{p^n} for p a prime, Cohen-Livingstone '65
- $C_2 \times C_2$, Kimmerle '06 using the Brauer-Suzuki Theorem
- $C_p \times C_p$ for an odd prime *p*, Hertweck '07, using elementary representation theory
- $C_4 \times C_2$, proof sketched in this talk

These results imply Sylow-like theorems for $V(\mathbb{Z}G)$:

- If the Sylow *p*-subgroup of *G* is cylic or isomorphic to $C_p \times C_p$, then any *p*-subgroup of $V(\mathbb{Z}G)$ is isomorphic to a subgroup of *G*.
- If the Sylow 2-subgroup of G is abelian, (generalized) quaternion or dihedral, then any 2-subgroup of $V(\mathbb{Z}G)$ is isomorphic to a subgroup of G.

Lemma

If P is a 2-group not containing a subgroup isomorphic to $C_4 \times C_2$, then P is cyclic, elementary-abelian, (generalized) quaternion, dihedral or semidihedral.

Proposition (Dokuchaev-Juriaans '96)

Let $N \subseteq G$ and let U be a group of order comprime to |N|. If $V(\mathbb{Z}G)$ contains a group isomorphic to U, then so does $V(\mathbb{Z}G/N)$.

 \rightarrow To prove (SIP) for $C_4 \times C_2$ one can assume $O_{2'}(G) = 1$ and that the Sylow 2-subgroup of G is dihedral or semidihedral. Such groups were classified by Gorenstein and Walter and by Alperin, Brauer and Gorenstein.

イロト イヨト イヨト イヨト

Lemma

If P is a 2-group not containing a subgroup isomorphic to $C_4 \times C_2$, then P is cyclic, elementary-abelian, (generalized) quaternion, dihedral or semidihedral.

Proposition (Dokuchaev-Juriaans '96)

Let $N \subseteq G$ and let U be a group of order comprime to |N|. If $V(\mathbb{Z}G)$ contains a group isomorphic to U, then so does $V(\mathbb{Z}G/N)$.

 \rightarrow To prove (SIP) for $C_4 \times C_2$ one can assume $O_{2'}(G) = 1$ and that the Sylow 2-subgroup of G is dihedral or semidihedral. Such groups were classified by Gorenstein and Walter and by Alperin, Brauer and Gorenstein.

イロト イヨト イヨト イヨト

Methods

For non-solvable *G* almost no methods are known to study (SIP). Let $u = \sum_{g \in G} z_g g \in \mathbb{Z}G$ and let x^G be a conjugacy class in *G*. Then $\varepsilon_x(u) = \sum_{g \in x^G} z_g$ is called **partial augmentation** of *u* at *x*.

For $u \in V(\mathbb{Z}G)$ of order *n* we know:

- $\varepsilon_x(u) = 0$, if x is central and $u \neq x$.
- If the order of x does not divide n, then $\varepsilon_x(u) = 0$.
- If $n = p^m$ and x_i are representatives of conj. cl. of elements of order p^k in G, where k < m, then $\sum_{i \in x_i} \varepsilon_{x_i}(u) \equiv 0 \mod p$.

Let χ be the extension of an ordinary or *p*-Brauer character of *G* to the *p*-regular elements of $V(\mathbb{Z}G)$ and let ψ be an ordinary character of a *p*-regular subgroup *U* of $V(\mathbb{Z}G)$. Then:

•
$$\chi(u) = \sum_{\substack{x^G \\ x \ p - regular}} \varepsilon_x(u)\chi(x).$$

• $\frac{1}{|U|} \sum_{u \in U} \chi(u)\psi(u^{-1})$ is a non-negative integer.

Methods

For non-solvable *G* almost no methods are known to study (SIP). Let $u = \sum_{g \in G} z_g g \in \mathbb{Z}G$ and let x^G be a conjugacy class in *G*. Then $\varepsilon_x(u) = \sum_{g \in x^G} z_g$ is called **partial augmentation** of *u* at *x*.

For $u \in V(\mathbb{Z}G)$ of order *n* we know:

- $\varepsilon_x(u) = 0$, if x is central and $u \neq x$.
- If the order of x does not divide n, then $\varepsilon_x(u) = 0$.
- If n = p^m and x_i are representatives of conj. cl. of elements of order p^k in G, where k < m, then ∑ ε_{xi}(u) ≡ 0 mod p.

Let χ be the extension of an ordinary or *p*-Brauer character of *G* to the *p*-regular elements of V($\mathbb{Z}G$) and let ψ be an ordinary character of a *p*-regular subgroup *U* of V($\mathbb{Z}G$). Then:

•
$$\chi(u) = \sum_{\substack{x^G \\ x \ p - \text{regular}}} \varepsilon_x(u)\chi(x).$$

• $\frac{1}{|U|} \sum_{u \in U} \chi(u)\psi(u^{-1})$ is a non-negative integer.

Example M_{11}

Let $G = M_{11}$ be the Mathieu group of degree 11. Let $U \leq V(\mathbb{Z}G)$ such that $U \cong C_4 \times C_2$. Then U contains three involutions and four elements of order 4, say $\alpha^{\pm 1}$ and $\beta^{\pm 1}$.

If $u \in U$ is of order 2, then $\chi(u) = \chi(2a)\varepsilon_{2a}(u) = -2$. If $u \in U$ is of order 4, then

$$\chi(u) = \chi(2a)\varepsilon_{2a}(u) + \chi(4a)\varepsilon_{4a}(u) = -2\varepsilon_{2a}(u) \equiv 0 \mod 4.$$

Thus

$$\frac{1}{8} \sum_{u \in U} \chi(u) = \frac{1}{8} \left(10 + 3 \cdot (-2) + 2\chi(\alpha) + 2\chi(\beta) \right)$$

is a non-negative integer, contradicting $2\chi(u) \equiv 0 \mod 8$ for u of order 4.

• • = • • = •

Can this method prove (SIP) for other groups?

- For $C_2 \times C_2 \times C_2$ it might, but one needs a reduction to groups being close to being simple.
- It fails for C₃ × C₃ × C₃ and G = PSL(3,3) and for the non-abelian group of order 27 and exponent 3 for G = PSL(2,3⁶).
- For cyclic groups not of prime power order it is known to fail in many cases, e.g. for C_6 it fails for G = PSL(2, 16) (this particular case can be solved using another method).

.

Thank you for your attention !

> < 물 > < 물 >