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Notation and Setting

G finite group
ZG integral group ring over G
Augmentation map: ε : ZG → Z, ε(

∑
g∈G

zg g) =
∑

g∈G
zg

V(ZG) group of units of augmentation 1, aka normalized units
The units of ZG are ±V(ZG), i.e. it suffices to study V(ZG)
For g ∈ G an element of the form ±g is called trivial unit.

We want to study the conncetion of finite subgroups of V(ZG)
and G . In general:

exp(V(ZG)) = exp(G) (Cohen-Livingstone ’65)
U ≤ V(ZG) finite, then |U| divides |G | (Zmud-Kurennoi ’67)
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Higman’s ”plausible” theorem and (SIP)

G. Higman (in his 1940 thesis, § 5)
”The theorems we prove are all partial cases of this plausible
theorem: A group of units of finite order in R(G ,C) is isomorphic
to a group of trivial units.”

If G is nilpotent, this is true by a result of A. Weiss (’91).

M. Hertweck (in his 1998 thesis)
There exist groups G and H of order 221 · 9728 and derived length
4 such that ZG ∼= ZH, but G � H.

In particular Higmans ”plausibel theorem” is not true in general.

Subgroup Isomorphism Problem (SIP): (W. Kimmerle 2007)
For which finite groups U does the following statement hold: If
V(ZG) contains a subgroup isomorphic to U, for some finite group
G , then G contains a subgroup isomorphic to U.
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Subgroup Isomorphism Problem
Only known counterexamples to (SIP):
Groups based on Hertweck’s counterexamples to the Isomorphism
Problem.
Only groups known to satisfy (SIP):

Cpn for p a prime, Cohen-Livingstone ’65
C2 × C2, Kimmerle ’06 using the Brauer-Suzuki Theorem
Cp × Cp for an odd prime p, Hertweck ’07, using elementary
representation theory
C4 × C2, proof sketched in this talk

These results imply Sylow-like theorems for V(ZG) :
If the Sylow p-subgroup of G is cylic or isomorphic to
Cp × Cp, then any p-subgroup of V(ZG) is isomorphic to a
subgroup of G .
If the Sylow 2-subgroup of G is abelian, (generalized)
quaternion or dihedral, then any 2-subgroup of V(ZG) is
isomorphic to a subgroup of G .
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Strategy

Lemma
If P is a 2-group not containing a subgroup isomorphic to C4 × C2,
then P is cyclic, elementary-abelian, (generalized) quaternion,
dihedral or semidihedral.

Proposition (Dokuchaev-Juriaans ’96)
Let N E G and let U be a group of order comprime to |N|. If
V(ZG) contains a group isomorphic to U, then so does V(ZG/N).

→ To prove (SIP) for C4 × C2 one can assume O2′(G) = 1 and
that the Sylow 2-subgroup of G is dihedral or semidihedral. Such
groups were classified by Gorenstein and Walter and by Alperin,
Brauer and Gorenstein.
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Methods
For non-solvable G almost no methods are known to study (SIP).
Let u =

∑
g∈G zg g ∈ ZG and let xG be a conjugacy class in G .

Then εx (u) =
∑

g∈xG
zg is called partial augmentation of u at x .

For u ∈ V(ZG) of order n we know:
εx (u) = 0, if x is central and u 6= x .
If the order of x does not divide n, then εx (u) = 0.
If n = pm and xi are representatives of conj. cl. of elements of
order pk in G , where k < m, then

∑
xi
εxi (u) ≡ 0 mod p.

Let χ be the extension of an ordinary or p-Brauer character of G
to the p-regular elements of V(ZG) and let ψ be an ordinary
character of a p-regular subgroup U of V(ZG). Then:

χ(u) =
∑
xG

x p−regular

εx (u)χ(x).

1
|U|

∑
u∈U

χ(u)ψ(u−1) is a non-negative integer.
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Example M11

Let G = M11 be the Mathieu group of degree 11. Let U ≤ V(ZG)
such that U ∼= C4 × C2. Then U contains three involutions and
four elements of order 4, say α±1 and β±1.

1a 2a 4a
χ 10 −2 0

If u ∈ U is of order 2, then χ(u) = χ(2a)ε2a(u) = −2. If u ∈ U is
of order 4, then

χ(u) = χ(2a)ε2a(u) + χ(4a)ε4a(u) = −2ε2a(u) ≡ 0 mod 4.

Thus
1
8

∑
u∈U

χ(u) = 1
8 (10 + 3 · (−2) + 2χ(α) + 2χ(β))

is a non-negative integer, contradicting 2χ(u) ≡ 0 mod 8 for u of
order 4.
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Does this work for other groups?

Can this method prove (SIP) for other groups?
For C2 × C2 × C2 it might, but one needs a reduction to
groups being close to being simple.
It fails for C3 × C3 × C3 and G = PSL(3, 3) and for the
non-abelian group of order 27 and exponent 3 for
G = PSL(2, 36).
For cyclic groups not of prime power order it is known to fail
in many cases, e.g. for C6 it fails for G = PSL(2, 16) (this
particular case can be solved using another method).
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Thank you for your attention !

Thank you for your attention !
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