Brauer characters of q'- degrees

Mark L. Lewis

Kent State University

April 2, 2016

Ischia Group Theory 2016 - Ischia, Italy

Joint work with Hung Tong-Viet

<ロ> < 回> < 回> < 回>

Kent State University

Throughout this talk, G will be a finite group and p will be a prime.

Kent State University

Throughout this talk, G will be a finite group and p will be a prime.

Let Irr(G) be the set of all complex irreducible characters of G and let IBr(G) be the set of irreducible *p*-Brauer characters of G.

Mark L. Lewis Brauer characters of q'-degrees

Throughout this talk, G will be a finite group and p will be a prime.

Let Irr(G) be the set of all complex irreducible characters of G and let IBr(G) be the set of irreducible *p*-Brauer characters of G.

The celebrated Itô-Michler theorem says that p does not divide $\chi(1)$ for all $\chi \in Irr(G)$ if and only if G has a normal abelian Sylow p-subgroup.

A B +
A
B +
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

3 →

One might ask whether there is any version of Itô-Michler theorem for Brauer characters of finite groups.

< □ > < 同 >

Kent State University

One might ask whether there is any version of Itô-Michler theorem for Brauer characters of finite groups.

Now let q be a prime and assume that q divides the degree of no irreducible p-Brauer character of G.

One might ask whether there is any version of Itô-Michler theorem for Brauer characters of finite groups.

Now let q be a prime and assume that q divides the degree of no irreducible p-Brauer character of G.

Indeed, it is known that if q = p, then G has a normal Sylow q-subgroup.

Image: A math a math

This raises the question of whether there exists a similar result when $q \neq p$.

Kent State University

This raises the question of whether there exists a similar result when $q \neq p$.

Navarro has asked when G is a p-solvable group and q divides the degree of no irreducible p-Brauer character, is it true that every p-regular conjugacy class of G intersects the normalizer of a Sylow q-subgroup of G?

This raises the question of whether there exists a similar result when $q \neq p$.

Navarro has asked when G is a p-solvable group and q divides the degree of no irreducible p-Brauer character, is it true that every p-regular conjugacy class of G intersects the normalizer of a Sylow q-subgroup of G?

Kent State University

In our first result, we prove that this is true.

Theorem 1.

Let p be a prime and let G be a finite p-solvable group. Let q be a prime and suppose that q divides the degree of no irreducible p-Brauer character of G. Then every p-regular conjugacy class of G meets $N_G(Q)$, where Q is a Sylow q-subgroup of G.

Mark L. Lewis Brauer characters of q'-degrees

Let H be a proper subgroup of a finite group G.

Image: A mathematical states and a mathem

Let H be a proper subgroup of a finite group G.

We say that an element $x \in G$ is an *H*-derangement in *G* if the conjugacy class x^{G} containing x does not meet *H*.

Kent State University

Let H be a proper subgroup of a finite group G.

We say that an element $x \in G$ is an *H*-derangement in *G* if the conjugacy class x^{G} containing x does not meet *H*.

Kent State University

We write $\Delta_H(G)$ for the set of all *H*-derangements of *G*.

Let H be a proper subgroup of a finite group G.

We say that an element $x \in G$ is an *H*-derangement in *G* if the conjugacy class x^{G} containing x does not meet *H*.

We write $\Delta_H(G)$ for the set of all *H*-derangements of *G*.

If *H* is core-free in *G*, then *G* is a permutation group acting on the right coset space $\Omega = G/H$ with point stabilizer *H* and $\Delta(G) = \Delta_H(G)$ is the set of all derangements or fixed-point-free elements of *G* on Ω .

Mark L. Lewis Brauer characters of q'-degrees

Notice that

$$\Delta_H(G) = G \setminus \cup_{g \in G} H^g.$$

Kent State University

A B > 4
B > 4
B

Notice that

$$\Delta_H(G) = G \setminus \cup_{g \in G} H^g.$$

With this concept, Theorem 1 can be restated as follows:

Mark L. Lewis Brauer characters of q'-degrees Kent State University

Notice that

$$\Delta_H(G)=G\setminus \cup_{g\in G}H^g.$$

With this concept, Theorem 1 can be restated as follows:

Let p and q be primes and let G be a finite p-solvable group and Q a Sylow q-subgroup of G. If q divides the degree of no irreducible p-Brauer character of G, then all $N_G(Q)$ -derangements of G have order divisible by p.

- ∢ ≣ →

That is, Theorem 1 holds for all finite groups when q = p.

That is, Theorem 1 holds for all finite groups when q = p.

Unfortunately, this does not hold true when q is different from p.

< ⊡ > < ∃ >

That is, Theorem 1 holds for all finite groups when q = p.

Unfortunately, this does not hold true when q is different from p.

There are examples that show that the p-solvable assumption on G in Theorem 1 is necessary.

Image: A math a math

Notice that the condition that every $N_G(P)$ -derangement of G, for some Sylow *p*-subgroup P of G, has order divisible by p is enough to characterize the groups G where every *p*-Brauer character has p'-degree.

Notice that the condition that every $N_G(P)$ -derangement of G, for some Sylow *p*-subgroup P of G, has order divisible by p is enough to characterize the groups G where every *p*-Brauer character has p'-degree.

On the other hand, every $\{p, q\}$ -group G has the property that every p-regular conjugacy of G meets $N_G(Q)$ where Q is a Sylow q-subgroup of G. (In this case, every p-regular element of G has q-power order and so, every p-regular conjugacy class of G meets Q.) Notice that the condition that every $N_G(P)$ -derangement of G, for some Sylow *p*-subgroup P of G, has order divisible by p is enough to characterize the groups G where every *p*-Brauer character has p'-degree.

On the other hand, every $\{p, q\}$ -group G has the property that every p-regular conjugacy of G meets $N_G(Q)$ where Q is a Sylow q-subgroup of G. (In this case, every p-regular element of G has q-power order and so, every p-regular conjugacy class of G meets Q.)

Since there exist $\{p, q\}$ -groups with irreducible *p*-Brauer characters that do not have q'-degrees, the condition that every *p*-regular class of *G* meets $N_G(Q)$ for some Sylow *q*-subgroup of *G* is not sufficient to characterize the *p*-solvable groups with *q* dividing the degree of no irreducible *p*-Brauer character.

Image: A math a math

Kent State University

< 口 > < 同

Our next goal is to obtain just such a characterization.

Our next goal is to obtain just such a characterization.

Manz and Wolf have previously studied these groups.

Mark L. Lewis Brauer characters of q'-degrees

Our next goal is to obtain just such a characterization.

Manz and Wolf have previously studied these groups.

Manz and Wolf proved that if G is a p-group so that all irreducible p-Brauer characters have degrees not divisible by q, then $\mathbf{O}^{q'}(G)$ is solvable.

If we make the assumption that a Sylow q-subgroup of G is abelian, then we are able to characterize the groups with all irreducible p-Brauer characters having q'-degree by adding the condition that $\mathbf{O}^{q'}(G)$ is solvable.

If we make the assumption that a Sylow q-subgroup of G is abelian, then we are able to characterize the groups with all irreducible p-Brauer characters having q'-degree by adding the condition that $\mathbf{O}^{q'}(G)$ is solvable.

Theorem 2.

Let p and q be distinct primes and suppose that G is p-solvable and a Sylow q-subgroup Q of G is abelian. Then $q \nmid \varphi(1)$ for all $\varphi \in IBr(G)$ if and only if the following conditions hold: (1) $x^G \cap N_G(Q) \neq \emptyset$ for all p-regular elements $x \in G$; (2) $\mathbf{O}^{q'}(G)$ is solvable;

Image: A math a math

Manz and Wolf also prove that if G is a p-solvable group where all the irreducible p-Brauer characters have degrees not divisible by q, then

Mark L. Lewis Brauer characters of q'-degrees

Manz and Wolf also prove that if G is a p-solvable group where all the irreducible p-Brauer characters have degrees not divisible by q, then

Kent State University

① in a *q*-series for *G*, the *q*-factors are abelian,
Manz and Wolf also prove that if G is a p-solvable group where all the irreducible p-Brauer characters have degrees not divisible by q, then

Kent State University

① in a *q*-series for *G*, the *q*-factors are abelian,

2 the q-length of $G/\mathbf{O}_{p,q}(G)$ is at most 1,

Manz and Wolf also prove that if G is a p-solvable group where all the irreducible p-Brauer characters have degrees not divisible by q, then

- ① in a *q*-series for *G*, the *q*-factors are abelian,
- 2 the q-length of $G/\mathbf{O}_{p,q}(G)$ is at most 1,
- \bigcirc and the Sylow q-subgroups of G are abelian or metabelian.

Image: A math a math

Kent State University

Kent State University

So there is no loss in assuming that $\mathbf{O}_p(G) = 1$.

Image: A mathematical states and a mathem

So there is no loss in assuming that $\mathbf{O}_p(G) = 1$.

There exist examples of groups that meet the conclusion of Theorem 1 and the conditions of Manz and Wolf, yet have irreducible p-Brauer characters whose degrees are divisible by q.

So there is no loss in assuming that $\mathbf{O}_p(G) = 1$.

There exist examples of groups that meet the conclusion of Theorem 1 and the conditions of Manz and Wolf, yet have irreducible p-Brauer characters whose degrees are divisible by q.

Thus, to obtain a characterization, we need a further condition beyond the one stated in Theorem 1 and the conditions found by Manz and Wolf.

Image: A math a math

Kent State University

Let $M \trianglelefteq G$ and $N \trianglelefteq M$.

Kent State University

Let $M \trianglelefteq G$ and $N \trianglelefteq M$.

We define

$$C_G(M/N) = \{g \in G : [g, M] \subseteq N\}.$$

Kent State University

メロト メタト メヨト

Let $M \trianglelefteq G$ and $N \trianglelefteq M$.

We define

$$C_G(M/N) = \{g \in G : [g, M] \subseteq N\}.$$

Note that we are not assuming that N is normal in G.

Mark L. Lewis Brauer characters of q'-degrees Kent State University

Let $M \trianglelefteq G$ and $N \trianglelefteq M$.

We define

$$C_G(M/N) = \{g \in G : [g, M] \subseteq N\}.$$

Note that we are not assuming that N is normal in G.

We prove that $C_G(M/N)$ is a subgroup of G and it contains M whenever M/N is abelian.

Image: A math a math

Let $M \trianglelefteq G$ and $N \trianglelefteq M$.

We define

$$C_G(M/N) = \{g \in G : [g, M] \subseteq N\}.$$

Note that we are not assuming that N is normal in G.

We prove that $C_G(M/N)$ is a subgroup of G and it contains M whenever M/N is abelian.

We will also prove that if $M \leq K \leq G$ and $K' \leq N$, then $K \leq C_G(M/N)$.

The characterization we obtain is:

Mark L. Lewis Brauer characters of q'-degrees Kent State University

Theorem 3.

Let p and q be distinct primes and suppose that G is p-solvable with $\mathbf{O}_p(G) = 1$. Let $L := \mathbf{O}^{q'}(G)$ and let $Q \leq L$ be a Sylow q-subgroup of G. Then $q \nmid \varphi(1)$ for all $\varphi \in IBr(G)$ if and only if the following conditions hold:

(1)
$$x^G \cap N_G(Q) \neq \emptyset$$
 for all p-regular elements $x \in G$;

- L is solvable;
- (3) $\mathbf{O}_q(L)$ is abelian;
- (4) For every normal subgroup N of $O_q(L)$ with $O_q(L)/N$ cyclic, the following hold:
 - () there exists an element $g \in L$ such that $(Q^g)' \leq N$
 - **2** Every p-regular conjugacy class of $C/\mathbf{O}_q(L)$ meets $N_{C/\mathbf{O}_q(L)}(Q^g/\mathbf{O}_q(L))$, where $C = C_L(\mathbf{O}_q(L)/N)$.

Mark L. Lewis Brauer characters of q'-degrees Kent State University

Note that (4) applies to all normal subgroups of $O_q(L)$ whose quotient is cyclic.

Note that (4) applies to all normal subgroups of $O_q(L)$ whose quotient is cyclic.

We need $C/\mathbf{O}_q(L)$ to have q not divide the degrees of irreducible Brauer characters.

Image: A math a math

Kent State University

Note that (4) applies to all normal subgroups of $O_q(L)$ whose quotient is cyclic.

We need $C/\mathbf{O}_q(L)$ to have q not divide the degrees of irreducible Brauer characters.

We see that $C/\mathbf{O}_q(L)$ has an abelian Sylow *q*-subgroup and is solvable.

Note that (4) applies to all normal subgroups of $O_q(L)$ whose quotient is cyclic.

We need $C/\mathbf{O}_q(L)$ to have q not divide the degrees of irreducible Brauer characters.

We see that $C/\mathbf{O}_q(L)$ has an abelian Sylow *q*-subgroup and is solvable.

To apply Theorem 2, we need the condition that every p-regular class intersect the normalizer of a Sylow q-subgroup.

Kent State University

Observe that both N and G/N will satisfy this property.

Mark L. Lewis Brauer characters of q'-degrees Kent State University

Observe that both N and G/N will satisfy this property.

In particular, all *p*-Brauer characters of $\mathbf{O}^{q'}(G)$ have q'-degree.

Observe that both N and G/N will satisfy this property.

In particular, all *p*-Brauer characters of $\mathbf{O}^{q'}(G)$ have q'-degree.

We show the converse of this holds when G/N is *p*-solvable.

Kent State University

Lemma 1.

Let p and q be distinct primes and suppose that $G/\mathbf{O}^{q'}(G)$ is p-solvable. Then $q \nmid \varphi(1)$ for all $\varphi \in IBr(G)$ if and only if $q \nmid \beta(1)$ for all $\beta \in IBr(\mathbf{O}^{q'}(G))$.

Mark L. Lewis Brauer characters of q'-degrees Kent State University

< □ > < 同 >

Lemma 1.

Let p and q be distinct primes and suppose that $G/\mathbf{O}^{q'}(G)$ is p-solvable. Then $q \nmid \varphi(1)$ for all $\varphi \in IBr(G)$ if and only if $q \nmid \beta(1)$ for all $\beta \in IBr(\mathbf{O}^{q'}(G))$.

Proof: By the discussion above, it suffices to show that if all irreducible *p*-Brauer characters of $L := \mathbf{O}^{q'}(G)$ have q'-degree, then $q \nmid \varphi(1)$ for all $\varphi \in IBr(G)$.

Lemma 1.

Let p and q be distinct primes and suppose that $G/\mathbf{O}^{q'}(G)$ is p-solvable. Then $q \nmid \varphi(1)$ for all $\varphi \in IBr(G)$ if and only if $q \nmid \beta(1)$ for all $\beta \in IBr(\mathbf{O}^{q'}(G))$.

Proof: By the discussion above, it suffices to show that if all irreducible *p*-Brauer characters of $L := \mathbf{O}^{q'}(G)$ have q'-degree, then $q \nmid \varphi(1)$ for all $\varphi \in IBr(G)$.

Let $\varphi \in IBr(G)$ and let $\theta \in IBr(L)$ be an irreducible constituent of φ_L .

By a Theorem of Dade (this requires *p*-solvability), we have $\varphi(1)/\theta(1)$ divides |G/L|.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● のへの

Mark L. Lewis Brauer characters of q'-degrees Kent State University

By a Theorem of Dade (this requires *p*-solvability), we have $\varphi(1)/\theta(1)$ divides |G/L|.

Since G/L is a q'-group and $q \nmid \theta(1)$ by our assumption, we deduce that $q \nmid \varphi(1)$.

Image: A math a math

Kent State University

By a Theorem of Dade (this requires *p*-solvability), we have $\varphi(1)/\theta(1)$ divides |G/L|.

Since G/L is a q'-group and $q \nmid \theta(1)$ by our assumption, we deduce that $q \nmid \varphi(1)$.

This proves the lemma.

Kent State University

Image: A math a math

Fix a prime p. Let G be a finite group and let H be a proper subgroup of G.

Fix a prime p. Let G be a finite group and let H be a proper subgroup of G.

For brevity, we say that the pair (G, H) has property \mathcal{D}_p if $x^G \cap H$ is not empty for all *p*-regular elements $x \in G$ or equivalently all *H*-derangements of *G* have order divisible by *p*.

Fix a prime p. Let G be a finite group and let H be a proper subgroup of G.

For brevity, we say that the pair (G, H) has property \mathcal{D}_p if $x^G \cap H$ is not empty for all *p*-regular elements $x \in G$ or equivalently all *H*-derangements of *G* have order divisible by *p*.

Lemma 2.

Let H be a proper subgroup of a finite group G and L be a normal subgroup of G such that G = HL. If T is a proper subgroup of L containing $H \cap L$, then $\Delta_T(L) \subseteq \Delta_H(G)$.

A (1) > A (2) >

Let p be a prime, G be a finite group and H be a subgroup of G. Let $L \trianglelefteq G$.

Mark L. Lewis Brauer characters of q'-degrees Kent State University

メロト メタト メヨト

Let p be a prime, G be a finite group and H be a subgroup of G. Let $L \trianglelefteq G$.

(1) If G = HL and (G, H) satisfies \mathcal{D}_p then so does $(L, H \cap L)$.

Let p be a prime, G be a finite group and H be a subgroup of G. Let $L \trianglelefteq G$.

- (1) If G = HL and (G, H) satisfies \mathcal{D}_p then so does $(L, H \cap L)$.
- (2) If L is a p-group or p'-group, (G, H) satisfies \mathcal{D}_p and $G \neq HL$, then (G/L, HL/L) also satisfies \mathcal{D}_p .

Image: A math a math

Kent State University

Let p be a prime, G be a finite group and H be a subgroup of G. Let $L \trianglelefteq G$.

- (1) If G = HL and (G, H) satisfies \mathcal{D}_p then so does $(L, H \cap L)$.
- (2) If L is a p-group or p'-group, (G, H) satisfies \mathcal{D}_p and $G \neq HL$, then (G/L, HL/L) also satisfies \mathcal{D}_p .
- (3) If $H \le K < G$ and (G, H) satisfies \mathcal{D}_p , then (G, K) satisfies \mathcal{D}_p .
Lemma 3.

Let p be a prime, G be a finite group and H be a subgroup of G. Let $L \trianglelefteq G$.

- (1) If G = HL and (G, H) satisfies \mathcal{D}_p then so does $(L, H \cap L)$.
- (2) If L is a p-group or p'-group, (G, H) satisfies \mathcal{D}_p and $G \neq HL$, then (G/L, HL/L) also satisfies \mathcal{D}_p .
- (3) If $H \le K < G$ and (G, H) satisfies \mathcal{D}_p , then (G, K) satisfies \mathcal{D}_p .
- (4) If $L \leq G$ such that $L \leq H$ and (G/L, H/L) satisfies \mathcal{D}_p then (G, H) satisfies \mathcal{D}_p .

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The next lemma asserts that the condition $N_G(Q)$ meets every *p*-regular class of a finite group *G*' is inherited to normal subgroups.

Kent State University

< 17 >

The next lemma asserts that the condition ${}^{\circ}N_G(Q)$ meets every *p*-regular class of a finite group *G*' is inherited to normal subgroups.

Lemma 4.

Let p and q be distinct primes. Let Q be a Sylow q-subgroup of G and let $L \trianglelefteq G$. Suppose that $x^G \cap N_G(Q) \neq \emptyset$ for all p-regular elements x of G. Then $x^L \cap N_L(Q \cap L) \neq \emptyset$ for all p-regular elements x of L. In particular, if $Q \le L$, then $x^L \cap N_L(Q) \neq \emptyset$ for all p-regular elements x of L.

Mark L. Lewis Brauer characters of q'-degrees Kent State University

Then $U \trianglelefteq Q \trianglelefteq H \le N_G(U)$ and $U \in Syl_q(L)$.

Mark L. Lewis Brauer characters of q'-degrees Kent State University

Then $U \trianglelefteq Q \trianglelefteq H \le N_G(U)$ and $U \in \operatorname{Syl}_q(L)$.

Since $L \trianglelefteq G$, we have $G = N_G(U)L$ by Frattini's argument.

Kent State University

・ロト ・回ト ・目と

Then $U \trianglelefteq Q \trianglelefteq H \le N_G(U)$ and $U \in Syl_q(L)$.

Since $L \leq G$, we have $G = N_G(U)L$ by Frattini's argument.

If $U \leq L$, then the conclusion is trivially true.

Kent State University

Then $U \trianglelefteq Q \trianglelefteq H \le N_G(U)$ and $U \in Syl_a(L)$.

Since $L \leq G$, we have $G = N_G(U)L$ by Frattini's argument.

If $U \leq L$, then the conclusion is trivially true.

So, we may assume that $N_L(U)$ is a proper subgroup of L which implies that both H and $N_G(U)$ are proper subgroups of G.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Then $U \trianglelefteq Q \trianglelefteq H \le N_G(U)$ and $U \in Syl_a(L)$.

Since $L \leq G$, we have $G = N_G(U)L$ by Frattini's argument.

If $U \leq L$, then the conclusion is trivially true.

So, we may assume that $N_L(U)$ is a proper subgroup of L which implies that both H and $N_G(U)$ are proper subgroups of G.

It suffices to show that the pair $(L, N_L(U))$ satisfies \mathcal{D}_p .

Then $U \trianglelefteq Q \trianglelefteq H \le N_G(U)$ and $U \in Syl_q(L)$.

Since $L \leq G$, we have $G = N_G(U)L$ by Frattini's argument.

If $U \leq L$, then the conclusion is trivially true.

So, we may assume that $N_L(U)$ is a proper subgroup of L which implies that both H and $N_G(U)$ are proper subgroups of G.

It suffices to show that the pair $(L, N_L(U))$ satisfies \mathcal{D}_p .

Clearly, (G, H) satisfies \mathcal{D}_p by the hypothesis, so $(G, N_G(U))$ satisfies \mathcal{D}_p by Lemma 3(3).

< ロ > < 回 > < 回 > <</p>

Then $U \trianglelefteq Q \trianglelefteq H \le N_G(U)$ and $U \in Syl_a(L)$.

Since $L \trianglelefteq G$, we have $G = N_G(U)L$ by Frattini's argument.

If $U \trianglelefteq L$, then the conclusion is trivially true.

So, we may assume that $N_L(U)$ is a proper subgroup of L which implies that both H and $N_G(U)$ are proper subgroups of G.

It suffices to show that the pair $(L, N_L(U))$ satisfies \mathcal{D}_p .

Clearly, (G, H) satisfies \mathcal{D}_p by the hypothesis, so $(G, N_G(U))$ satisfies \mathcal{D}_p by Lemma 3(3).

Now part (1) of Lemma 3 implies that $(L, L \cap N_G(U))$ satisfies \mathcal{D}_p or $(L, N_L(U))$ satisfies \mathcal{D}_p as wanted.

・ロン ・回 と ・ ヨン ・

We first prove Theorem 1 under the additional hypothesis that $G = Q\mathbf{O}_{q'}(G)$ where Q is a Sylow q-subgroup of G.

Kent State University

Image: A mathematical states and a mathem

We first prove Theorem 1 under the additional hypothesis that $G = Q\mathbf{O}_{q'}(G)$ where Q is a Sylow q-subgroup of G.

Lemma 5.

Let p and q be distinct primes and let $Q \in \text{Syl}_q(G)$. Suppose that $G = Q\mathbf{O}_{q'}(G)$ and that $q \nmid \varphi(1)$ for all $\varphi \in \text{IBr}(G)$. Let $K = \mathbf{O}_{q'}(G)$ and $H = N_G(Q)$. Then

- Q is abelian and x^K ∩ C_K(Q) ≠ Ø for all p-regular elements x ∈ K;
- 2 $x^G \cap N_G(Q)$ is non-empty for all p-regular elements $x \in G$.

Kent State University

```
Let Q \in \operatorname{Syl}_q(G) and H = N_G(Q).
```


Mark L. Lewis Brauer characters of q'-degrees Kent State University

```
Let Q \in \operatorname{Syl}_q(G) and H = N_G(Q).
```

For $N \trianglelefteq G$ is nontrivial, prove that $y^G \cap HN \neq \emptyset$ for all *p*-regular elements $y \in G$.

Image: A math a math

Let $Q \in \operatorname{Syl}_{q}(G)$ and $H = N_{G}(Q)$.

For $N \trianglelefteq G$ is nontrivial, prove that $y^G \cap HN \neq \emptyset$ for all *p*-regular elements $y \in G$.

Using induction, we can assume H is core-free and so $\mathbf{O}_q(G) = 1$.

Mark L. Lewis Brauer characters of q'-degrees Kent State University

Image: A math a math

Let $Q \in Syl_{q}(G)$ and $H = N_{G}(Q)$.

For $N \trianglelefteq G$ is nontrivial, prove that $y^G \cap HN \neq \emptyset$ for all *p*-regular elements $y \in G$.

Using induction, we can assume H is core-free and so $\mathbf{O}_q(G) = 1$.

Kent State University

We also prove that $\mathbf{O}_p(G) = 1$.

Let $Q \in \operatorname{Syl}_{q}(G)$ and $H = N_{G}(Q)$.

For $N \trianglelefteq G$ is nontrivial, prove that $y^G \cap HN \neq \emptyset$ for all *p*-regular elements $y \in G$.

Using induction, we can assume H is core-free and so $\mathbf{O}_q(G) = 1$.

We also prove that $\mathbf{O}_p(G) = 1$.

Let $L = \mathbf{O}^{q'}(G)$. Prove that L = QK where $K = \mathbf{O}_{q'}(L)$ is solvable.

イロト イヨト イヨト イ

Use Lemma 5 to obtain $x^{K} \cap C_{K}(Q) \neq \emptyset$ for every *p*-regular element $x \in K$.

Kent State University

Observe that K contains a minimal normal subgroup of G, say N.

Image: A mathematical states and a mathem

.∋...>

Observe that K contains a minimal normal subgroup of G, say N.

Since K is solvable, N is an elementary abelian r-group for some prime r different from both p and q.

Observe that K contains a minimal normal subgroup of G, say N.

Since K is solvable, N is an elementary abelian r-group for some prime r different from both p and q.

It suffices to show that $y^G \cap H \neq \emptyset$ for all *p*-regular elements $y \in HN$.

Observe that K contains a minimal normal subgroup of G, say N.

Since K is solvable, N is an elementary abelian r-group for some prime r different from both p and q.

It suffices to show that $y^G \cap H \neq \emptyset$ for all *p*-regular elements $y \in HN$.

Now fix a *p*-regular element $y \in HN$.

Mark L. Lewis Brauer characters of q'-degrees Kent State University

If n = 1, then $y = h \in H$ and we are done.

A B > 4
 B > 4
 B

If n = 1, then $y = h \in H$ and we are done.

So we assume that *n* is nontrivial.

Kent State University

-

If n = 1, then $y = h \in H$ and we are done.

So we assume that *n* is nontrivial.

We have from above, $n^k \in C_K(Q)$ for some $k \in K$.

Kent State University

Image: A mathematical states and a mathem

-

If n = 1, then $y = h \in H$ and we are done.

So we assume that *n* is nontrivial.

We have from above, $n^k \in C_K(Q)$ for some $k \in K$.

Hence $Q^{k^{-1}} \leq C_{QK}(n)$, and thus by Sylow theorem, $Q^{k^{-1}} = Q^{l}$ for some $l \in C_{QK}(n)$ so $Q^{lk} = Q$ and hence $lk \in H$.

Image: A math a math

If n = 1, then $y = h \in H$ and we are done.

So we assume that *n* is nontrivial.

We have from above, $n^k \in C_K(Q)$ for some $k \in K$.

Hence $Q^{k^{-1}} \leq C_{QK}(n)$, and thus by Sylow theorem, $Q^{k^{-1}} = Q^{l}$ for some $l \in C_{QK}(n)$ so $Q^{lk} = Q$ and hence $lk \in H$.

Since $n^{lk} = n^k$ and $h^{lk} \in H$, we obtain that

$$y^{lk} = (hn)^{lk} = h^{lk}n^{lk} = h^{lk}n^k \in H.$$

Image: A math a math

Kent State University

If n = 1, then $y = h \in H$ and we are done.

So we assume that n is nontrivial.

We have from above, $n^k \in C_K(Q)$ for some $k \in K$.

Hence $Q^{k^{-1}} \leq C_{QK}(n)$, and thus by Sylow theorem, $Q^{k^{-1}} = Q^{l}$ for some $l \in C_{QK}(n)$ so $Q^{lk} = Q$ and hence $lk \in H$.

Since $n^{lk} = n^k$ and $h^{lk} \in H$, we obtain that

$$y^{lk} = (hn)^{lk} = h^{lk}n^{lk} = h^{lk}n^k \in H.$$

Therefore, we have shown that $y^{G} \cap H$ is not empty.

Mark L. Lewis Brauer characters of q'-degrees Kent State University

Image: A mathematical states and a mathem

In the examples below, we show that the p-solvable assumption on G in Theorem 1 is necessary.

Mark L. Lewis Brauer characters of q'-degrees Kent State University

In the examples below, we show that the p-solvable assumption on G in Theorem 1 is necessary.

Let p and q be distinct primes and let $f \ge 1$ be an integer. Suppose $Q \in Syl_q(G)$.

< □ > < 同 >

In the examples below, we show that the p-solvable assumption on G in Theorem 1 is necessary.

Let p and q be distinct primes and let $f \ge 1$ be an integer. Suppose $Q \in \operatorname{Syl}_q(G)$.

1. Assume $f \ge 4$, p = 2, and q is a prime divisor of $2^{f} + 1$.

Kent State University

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

In the examples below, we show that the p-solvable assumption on G in Theorem 1 is necessary.

Let p and q be distinct primes and let $f \ge 1$ be an integer. Suppose $Q \in \operatorname{Syl}_q(G)$.

1. Assume $f \ge 4$, p = 2, and q is a prime divisor of $2^{f} + 1$.

Let $G = \operatorname{SL}_2(2^f)$.

Image: A math a math

In the examples below, we show that the p-solvable assumption on G in Theorem 1 is necessary.

Let p and q be distinct primes and let $f \ge 1$ be an integer. Suppose $Q \in \operatorname{Syl}_q(G)$.

1. Assume $f \ge 4$, p = 2, and q is a prime divisor of $2^{f} + 1$.

Let $G = \operatorname{SL}_2(2^f)$.

Then $N_G(Q) \cong D_{2(2^f+1)}$ and all irreducible 2-Brauer characters of G have 2-power degree.

Kent State University
Examples

In the examples below, we show that the p-solvable assumption on G in Theorem 1 is necessary.

Let p and q be distinct primes and let $f \ge 1$ be an integer. Suppose $Q \in \operatorname{Syl}_q(G)$.

1. Assume $f \ge 4$, p = 2, and q is a prime divisor of $2^{f} + 1$.

Let $G = \operatorname{SL}_2(2^f)$.

Then $N_G(Q) \cong D_{2(2^f+1)}$ and all irreducible 2-Brauer characters of G have 2-power degree.

In particular, $q \nmid \varphi(1)$ for all 2-Brauer characters $\varphi \in IBr(G)$, but $N_G(Q)$ contains no element of order $2^f - 1$.

A B > A B >

Kent State University

Take $G = SL_2(p^2)$.

Kent State University

Take $G = SL_2(p^2)$.

Then q divides the degree of no irreducible p-Brauer character of G.

Take $G = SL_2(p^2)$.

Then q divides the degree of no irreducible p-Brauer character of G.

However, $N_G(Q) \cong D_{p^2+1}$ contains no *p*-regular element of order $p^2 - 1$.

Image: A math a math

Take $G = SL_2(p^2)$.

Then q divides the degree of no irreducible p-Brauer character of G.

However, $N_G(Q) \cong D_{p^2+1}$ contains no *p*-regular element of order $p^2 - 1$.

3. Let p be a prime of the form $2^f \pm 1 \ge 17$, let q = 2, and let $G = PSL_2(p)$.

A B > A B >

Kent State University

Take $G = SL_2(p^2)$.

Then q divides the degree of no irreducible p-Brauer character of G.

However, $N_G(Q) \cong D_{p^2+1}$ contains no *p*-regular element of order $p^2 - 1$.

3. Let p be a prime of the form $2^f \pm 1 \ge 17$, let q = 2, and let $G = PSL_2(p)$.

Then all irreducible p-Brauer characters of G have odd degree and a Sylow 2-subgroup Q of G is maximal in G.

・ロ・ ・ 日・ ・ ヨ・・

Take $G = SL_2(p^2)$.

Then q divides the degree of no irreducible p-Brauer character of G.

However, $N_G(Q) \cong D_{p^2+1}$ contains no *p*-regular element of order $p^2 - 1$.

3. Let p be a prime of the form $2^f \pm 1 \ge 17$, let q = 2, and let $G = PSL_2(p)$.

Then all irreducible p-Brauer characters of G have odd degree and a Sylow 2-subgroup Q of G is maximal in G.

Then $2 \nmid \varphi(1)$ for all $\varphi \in IBr(G)$ but $N_G(Q) = Q$ contains no odd *p*-regular element of *G*.

A B > A B >

Kent State University

As we noted before, all $\{p, q\}$ -groups trivially satisfy the conclusion of Theorem 1.

Kent State University

As we noted before, all $\{p, q\}$ -groups trivially satisfy the conclusion of Theorem 1.

Kent State University

Also, by Burnside's theorem, we know that any $\{p, q\}$ -group is necessarily solvable.

As we noted before, all $\{p, q\}$ -groups trivially satisfy the conclusion of Theorem 1.

Also, by Burnside's theorem, we know that any $\{p, q\}$ -group is necessarily solvable.

Thus, it suffices to find a $\{p, q\}$ -group G where in the q-series for G, the q-factors are abelian, the q-length of $G/\mathbf{O}_{p,q}(G)$ is at most 1, and the Sylow q-subgroups are metabelian, and there exists a p-Brauer character whose degree is divisible by q.

A B > A B >

Kent State University

Obviously, a Sylow 2-subgroup is metabelian, the 2-factors in 2-series for G will be abelian, and G will have 2-length 1.

Obviously, a Sylow 2-subgroup is metabelian, the 2-factors in 2-series for G will be abelian, and G will have 2-length 1.

Finally, it is not difficult to see that there exist irreducible 3-Brauer characters for G that have degree 6

Obviously, a Sylow 2-subgroup is metabelian, the 2-factors in 2-series for G will be abelian, and G will have 2-length 1.

Finally, it is not difficult to see that there exist irreducible 3-Brauer characters for G that have degree 6

We note that there is nothing particular about 3 and 2 that are needed for an example.

Obviously, a Sylow 2-subgroup is metabelian, the 2-factors in 2-series for G will be abelian, and G will have 2-length 1.

Finally, it is not difficult to see that there exist irreducible 3-Brauer characters for G that have degree 6

We note that there is nothing particular about 3 and 2 that are needed for an example.

We claim that for any two distinct primes p and q, the iterated wreath product of Z_q by Z_p and then Z_q again will yield an example, but we leave the details as an exercise.