Groups equal to a product of three conjugate subgroups

John Cannon, Martino Garonzi, Dan

Levy, Attila Maróti, Iulian I. Simion

The question

G - a finite group
A factorization of G by conjugates of $A<G$ is any representation of G as a setwise product

$$
G=A^{g_{1}} \cdots A^{g_{m}}
$$

where $g_{i} \in G$ for all $1 \leq i \leq m$.
Q: What can be said about the minimal m when
A varies over all proper subgroups of G ?

Answers

- Conjugate factorizations of G exist if and only if G is non-nilpotent. Henceforth assume G is non-nilpotent.
- $m \geq 3$
- G solvable: The minimal m depends on G and is unbounded.

Example: $G=D_{2 p}, p \geq 3$ a prime. Can only use $A=\langle r\rangle$ where r is a reflection. The minimal m is

$$
\left\lceil\log _{2} p\right\rceil+1
$$

The non-solvable answer

Thm: If G is a finite non-solvable group then there exists $A<G$ such that G is a product of three conjugates of A.

What goes into the proof

1. Connection between products of conjugates of A and products of double cosets of A.

In particular:

$$
G=(A x A)^{2} \Leftrightarrow G=A A^{x} A^{x^{2}}
$$

Thm: If G is a finite non-solvable group then there exists $A<G$ such that $G=(A x A)^{2}$.

Proof ingredients continued

2. Reduction to almost simple groups.
3. Use the classification of the finite simple groups.
4. Alternating groups: $G=\operatorname{Alt}(n), A=\operatorname{Alt}(n-1), n \geq$ 5.
G acts 2 -transitively on $\{1, \ldots, n\}$
with point stabilizer A

$$
\begin{aligned}
G & =A \cup A x A, x \notin A \\
& \Rightarrow G=(A x A)^{2}
\end{aligned}
$$

Groups with a $B N$ - pair

5. Groups of Lie type: G is a simple group of Lie type and $A=B$ is a Borel subgroup of G.
In particular, G is a group with a $B N$-pair and a finite Weyl group W.
Thm: Let G be a group with a $B N$-pair and a finite Weyl group W. Let $w_{0} \in W$ be the unique longest element of W, and $n_{0} \in N$ be such that $n_{0} H=w_{0}$. Then

$$
G=\left(B n_{0} B\right)^{2}=B B^{n_{0}} B
$$

Hecke algebra of the double cosets

6. Sporadic groups: Use Hecke algebra of the double cosets. G be a finite group, $A \leq G$.
$\left\{x_{1}, \ldots, x_{r}\right\} \subseteq \mathrm{G}$ a complete set of distinct A double coset representatives. "Represent" $A x_{j} A$ by:

$$
e_{j}:=\frac{1}{|A|} \sum_{y \in A x_{j} A} y \in \mathbb{Q}[G], \quad 1 \leq j \leq r
$$

$\left\{e_{1}, \ldots, e_{r}\right\}$ is a basis of a subring of $\mathbb{Q}[G]$:

$$
e_{i} e_{j}=\sum_{k=1}^{r} c_{i j k} e_{k}
$$

The $c_{i j k}$ are non-negative integers.

Hecke algebra continued

$$
G=\left(A x_{j} A\right)^{2} \Leftrightarrow c_{j j k}>0, \forall 1 \leq k \leq r
$$

The $c_{i j k}$ can be computed efficiently using the complex representation theory of G, if the permutation character 1_{A}^{G} is multiplicity free. GAP package "mfer" (T. Breuer, I. Höhler and J. Müller) has all necessary data to carry these computations for the sporadic groups.
Except...

Odd man out

7. $G=O^{\prime} N$. Here there is no multiplicity free permutation character available that also takes care of $\operatorname{Aut}(G)$. Choosing $A=J_{1}$ we implemented a probabilistic algorithm in MAGMA that verifies the existence of $x \in G$ such that $G=(A x A)^{2}$.
Open Question: Can one classify solvable groups which are equal to a product of three conjugates of a proper subgroup?

Papers

1. M. Garonzi, D. Levy, "Factorizing a Finite Group into Conjugates of a Subgroup", Journal of Algebra, vol 418 (2014), 129-141.
2. J. Cannon, M. Garonzi, D. Levy, A. Maróti, I. I. Simion, "Groups equal to a product of three conjugate subgroups". To appear in Israel Journal of Mathematics.
