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Representations of groups

There are three principal types of representations of groups,
each with its particular field of usefulness, are the following:

(1) Permutation representation of groups.
(2) Monomial representation of groups.
(3) Linear or matrix representation of groups.

Oystein Ore
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Representations of groups

Ore continues:
These three types of representations correspond to an
embedding of the group in the following groups:

(1) The symmetric group.
(2) The complete monomial group.
(3) The full linear group.

The symmetric group and the full linear group have been
exhaustively investigated and many of their principal
properties are known.
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Representations of groups

A similar study does not seem to exist for complete
monomial group.



Monomial groups

O. Ore; Theory of monomial groups, Trans. Amer.
Math. Soc. 51, (1942) 15–64.



Monomial groups

Let us recall the definition of a monomial group.



Monomial groups

Let H ba an arbitrary group and let n ∈ N. A monomial
permutation over H is a linear transformation

γ =

(
x1 x2 . . . xn

h1xi1 h2xi2 . . . hnxin

)
where each variable is changed into some other variable
multiplied by an element of H.

The elements hi ∈ H will be called factors or
multipliers in γ.
The multiplication hixij is a formal multiplication satisfying
(hihj)xk = hi(hjxk).
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Monomial groups

If η is another monomial permutation

η =

(
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a1xj1 a2xj2 . . . anxjn
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where ai ’s are elements of H, then
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Monomial groups

For

γ =

(
x1 x2 . . . xn

h1xi1 h2xi2 . . . hnxin

)

γ−1 =

(
xi1 xi2 . . . xin

h−1
1 x1 h−1

2 x2 . . . h−1
n xn

)



Monomial groups

The set Σn(H) of all monomial permutations over H of
variables x1, . . . , xn with multiplication defined as above
forms a group.

This group Σn(H) is called complete monomial group
of degree n.
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Monomial groups

The set of all monomial permutations of the form

θ =

(
x1 x2 . . . xn

xi1 xi2 . . . xin

)
=

(
1 2 . . . n
i1 i2 . . . in

)
forms a subgroup Σn({1}) of Σn(H) and it is isomorphic to
the symmetric group on n letters.



Monomial groups

The monomial permutations of the form

η =

(
x1 x2 . . . xn

h1x1 h2x2 . . . hnxn

)
= [h1, h2, . . . , hn]

where hi ∈ H forms a subgroup of Σn(H) which is
isomorphic to the direct product H × . . .×H of n copies of
H.

Every monomial permutation can be written uniquely as a
product of monomial permutation and a product
(multiplication).



Monomial groups

The monomial permutations of the form

η =

(
x1 x2 . . . xn

h1x1 h2x2 . . . hnxn

)
= [h1, h2, . . . , hn]

where hi ∈ H forms a subgroup of Σn(H) which is
isomorphic to the direct product H × . . .×H of n copies of
H.

Every monomial permutation can be written uniquely as a
product of monomial permutation and a product
(multiplication).



Monomial groups

For example the element γ can be written as(
x1 x2 . . . xn

h1xi1 h2xi2 . . . hnxin

)
=

(
x1 . . . xn
xi1 . . . xin

)(
x1 x2 . . . xn

h1x1 h2x2 . . . hnxn

)
=

(
x1 . . . xn
xi1 . . . xin

)
[h1, . . . , hn]

Moreover one may observe that, when we take the
conjugate of a multiplication [h1, . . . , hn] by a permutation
σ ∈ Σn({1}), we have that the coordinates of the
multiplication is permuted. Indeed
σ−1[h1, . . . , hn]σ = [h1, . . . , hn]σ = [h1σ , . . . , hnσ ] hence we
have

Σn(H) ∼= H o Sn
∼= (H × . . .H) o Sn

The wreath product is the permutational wreath product.
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Monomial groups

Let G be a group which has a subgroup H of index n in G .

Each element g in G permutes the cosets and there are
factors coming from H.
Namely



Monomial groups

Hxi .g = Hxig

where
{Hxi | i = 1, . . . , n}

is the set of right cosets of H in G and

{xi | i = 1, . . . , n}
is the set of right coset representatives of H in G .

Then each g ∈ G determines a permutation π(g) of the
right cosets and xi .g = hi(g)xiπ(g) and n elements hi(g) in
H.



Monomial groups

Then the map
G → GL(n,ZH)

g → Diag(h1(g), h2(g), . . . , hn(g))π(g)



Monomial groups


h1(g)

h2(g)
. . .

hn(g)




0 1 0 0 0
0 0 1
1 . . .
0 0 1 0
0 0 0


︸ ︷︷ ︸

defines a monomorphism from G into GL(n,ZH) where
ZH is the group ring of H over the ring of integers.

Σn(H) is isomorphic to the subgroup of monomial matrices
in GL(n,Z(H)).
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Monomial groups

Monomial groups occur also as centralizers of elements in
symmetric groups.

Example. Indeed centralizer of an element say
(12)(34)(56) ∈ S6 is

CS6((12)(34)(56)) ∼= ((Z2 o S3) ∼= Σ3(Z2)

Therefore as Ore suggested monomial groups appear
naturally as centralizers of elements in symmetric groups.
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Monomial groups

As in the symmetric groups one can write each monomial
permutation as a product of commuting disjoint cycles.

Example Let n = 5 and H = S3.

γ =

(
x1 x2 x3 x4 x5

(123)x3 (234)x2 (34)x1 (134)x5 (23)x4

)

=

(
x1 x3

(123)x3 (34)x1

)(
x2

(234)x2

)(
x4 x5

(134)x5 (23)x4

)
=
(

(123)x3 (34)x1) ((134)x5 (23)x4) ((234)x2)
)



Monomial groups

As we mentioned before each monomial can be written as a
product of disjoint cycles. Now for each cycle

γ =

(
x1 x2 . . . xm

c1x2 c2x3 . . . cmx1

)
= (c1x2, c2x3, . . . , cmx1)

where ci ∈ H, the mth power of γ is

γm =

(
x1 x2 . . . xm

∆1x1 ∆2x2 . . . ∆mxn

)
where

∆1 = c1c2 . . . cm, ∆2 = c2c3 . . . cmc1, . . . ,

∆m = cmc1 . . . cm−1
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Monomial groups

The elements ∆i ∈ H are called the determinants of γ.
As you observed, the determinants are all conjugate as

∆2 = c−1
1 ∆1c1, . . .∆m = c−1

m−1∆m−1cm−1,∆1 = c−1
m ∆mcm

So one observes that for each cycle there is a unique
determinant class in H.



Diagonal Embedding of Monomial groups

Let Π be the set of sequences consisting of prime numbers.
Let ξ ∈ Π and ξ = (p1, p2, . . .) be a sequence consisting of
not necessarily distinct primes pi .

From the given sequence ξ we may obtain a divisible
sequence (n1, n2, . . . ni , . . .) where

n1 = p1, and ni+1 = pi+1ni

we have
ni |ni+1

for all i = 1, 2, . . ..



Diagonal Embedding of Monomial groups

We may embed a complete monomial group Σni (H)
diagonally into Σni+1(H) as follows.

dpi+1 : Σni (H)→ Σni+1(H)



Diagonal Embedding of Monomial groups

Given γ ∈ Σni (H) where γ =

(
x1 x2 . . . xni

h1xj1 h2xj2 . . . hnixjni

)
we define dpi+1(γ) =

(
x1 x2 . . . xni | xni+1 xni+2 . . . x2ni | . . .

h1xj1 h2xj2 . . . hni xjni
| h1xni+j1 h2xni+j2 . . . hni xni+jni

| . . .

)
(
. . . xmni+k . . .
. . . hkxmni+jk . . .

)
where ni+1 = nipi+1 and ξ = (p1, p2, . . . pi . . .) is a
sequence of not necessarily distinct primes. This embedding

corresponds to strictly diagonal embedding of Σni (H) into
Σni+1(H).



According to the given sequence of primes we continue to
embed

dpi+1 : Σni (H)→ Σni+1(H)

Then we have the following diagram and we obtain direct
systems from the following embeddings

{1} dp1→ Σn1(H)
dp2→ Σn2(H)

dp3→ Σn3(H)
dp4→ . . .

{1} dp1→ An1(H)
dp2→ An2(H)

dp3→ An3(H)
dp4→ . . .

where ni = ni−1pi , i = 1, 2, 3 . . . and Σni (H) is the
complete monomial group on ni letters over the group H
and Ani (H) is the monomial alternating group on ni letters
over H and n0 = 1.
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Monomial groups

The direct limit groups obtained from the above
construction are called homogenous monomial group
over the group H and denoted by Σξ(H) and homogenous
alternating group Aξ(H) over H respectively.

Σξ(H) ∼=
∞⋃
i=1

Σni (H) ∼= S(ξ) n B

where B is the base group which is isomorphic to direct
product of the group H.



Centralizers of elements in Σξ(H)

Question 1. Find necessary and sufficient condition for
two elements to be conjugate in Σξ(H).

Question 2. Find the structure of centralizer of an
element in Σξ(H).

Question 3. When two groups Σξ1(H) and Σξ2(H) are
isomorphic.
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Centralizers of elements in Σξ(H)

For Question 1, by taking the conjugate of a cycle

γ =

(
x1 xi1 . . . xim
c1xi1 c2xi2 . . . cmx1

)
by an element of Σn(H) we may write it in the form

δ =

(
x1 xi1 . . . xim
xi1 xi2 . . . ax1

)
where a ∈ H is an element in the determinant class of γ.

δ is called a normal form of γ.
Any monomial permutation ρ is similar to a product of
cycles without common variables, so ρ = γ1 . . . γr where
each cycle is in normal form.
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Conjugation of elements in Σξ(H)

Lemma 1 ( Ore)

The necessary and sufficient condition for two monomial
cycles to be conjugate in Σn(H) is that they shall have the
same length and the same determinant class.

Therefore two monomial permutations are conjugate if and
only if the cycles in their cycle decomposition may be made
correspond in such a manner that corresponding cycles
have he same length and determinant class.
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Conjugation of elements

The direct limit group can be written as

Σξ(H) =
∞⋃
i=1

Σni (H).

For an element γ ∈ Σξ(H), we define the short cycle type
of γ as the cycle type of γ in the smallest ni where
γ ∈ Σni (H).
For the short cycle type, we put an order according to the
length and the determinant class.



Conjugation of elements

By type of a monomial permutation γ we have two
variables length of cycle and determinant class.

t(γ) = (a11r1, a12r1, . . . a1i1r1, a21r2, a22r2, . . . , a2i2r2 . . . , alil rl)

aij is the representative of conjugacy class in H and ri is the
number of cycles of length i in the cycle decomposition of
γ with determinant class aij .



Conjugation of elements

Therefore by using the above lemma, we may state the
following:

Lemma 2

Two elements of Σξ(H) are conjugate in Σξ(H) if and only
if they have the same cycle type in Σni (H) for some ni

dividing ξ.



Steinitz numbers

For the centralizers of elements and isomorphism question,
we now recall Steinitz numbers (supernatural numbers).



Steinitz numbers

Recall that the formal product n = 2r23r35r5 . . . of prime
powers with 0 ≤ rk ≤ ∞ for all k is called a Steinitz
number (supernatural number).

The set of Steinitz numbers form a partially ordered set
with respect to division, namely if α = 2r23r35r5 . . . and
β = 2s23s35s5 . . . be two Steinitz numbers, then α|β if and
only if rp ≤ sp for all prime p.

Moreover they form a lattice if we define meet and join as
α ∧ β = 2min{r2,s2}3min{r3,s3}5min{r5,s5} . . . and
α ∨ β = 2max{r2,s2}3max{r3,s3}5max{r5,s5} . . . .
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Steinitz numbers

For each sequence ξ, we define a Steinitz number

Char(ξ) = 2r23r3 . . . p
rpi
i . . .

where rpi is the number of times that the prime pi repeat in
ξ. If it repeats infinitely often, then we write p∞i .

For a group Σξ(H) obtained from the sequence ξ we define
Char(Σξ(H)) = Char(ξ).
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Steinitz numbers

For each Steinitz number ξ we can define a homogenous
monomial group Σξ(H) and for each homogenous
monomial group Σξ(H) we have a Steinitz number.



Centralizers

Since every cycle is conjugate to a cycle in the normal form
and centralizers of conjugate elements are conjugate
(isomorphic), we may assume that we have the cycles in
the normal form.

Moreover as disjoint cycles commute, we find centralizer of
a cycle of determinant class a ∈ H repeated m times, then
centralizer of an arbitrary cycle will be direct product of the
centralizers for each distinct cycle.
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Centralizers

First we have only one cycle.

Let γ =

(
x1 . . . xm

x2 . . . ax1

)
be a cycle in the normal form

and a ∈ H.
Then the centralizer of γ in Σm(H) is isomorphic to

Ca = CH(a)〈γ〉



Centralizers

Assume that the cycle is repeated s times with the same
determinant class a ∈ H. Then
(γ) =

(
x1 x2 . . . xm
x2 x3 . . . ax1

)(
xm+1 . . . x2m
xm+2 . . . axm+1

)
. . .

(
x(s−1)m+1 . . . xsm
x(s−1)m+2 . . . ax(s−1)+1

)
︸ ︷︷ ︸

s − times

Then

CΣsm(H)(γ) ∼= (CH(a)〈γ〉) o Ss
∼= Σs(CH(a)〈γ〉)

Then by using this we may find the structure of centralizer
of an arbitrary element in Σξ(H).
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Centralizer Special case

Theorem 3

Let γ be an element of Σξ(H) where γ is a product of
cycles with the same determinant class a ∈ H of length m
repeated s times and principal beginning of γ is contained
in Σni (H) where ni = ms. Then

CΣξ(H)(γ) ∼= Ca(Σξ1(Ca))

where ξ1 = Char(ξ)
ni

s.



Theorem 4

Let ρ be an element of Σξ(H) with principal beginning is in
Σnk (H) with its normal form ρ = λ1 . . . λl , where
λi = γi1 . . . γiri where for a fixed i the γij are the normalized
cycles of the same length mi and the determinant class ai .
Then the centralizer

CΣξ(H)(ρ) ∼= Ca1(Σξ1(Ca1))×Ca2(Σξ2(Ca2))×. . .×Cal (Σξl (Cal ))

where Cai is the centralizer of a single element
γij ∈ Σmi (H).
The group Cai consists of elements of the form κ = [ci ]γ

j
i1

where the element ci belongs to the group CH(ai) and
Char(ξi) = Char(ξ)

nk
ri .



Centralizers

Observe that homogenous monomial group over H becomes
homogenous symmetric group when H = {1}.

Therefore our results are compatible with centralizers of
elements in homogenous symmetric groups.

Centralizers of elements in homogenous symmetric groups
is studied and the following is proved:



Centralizers

Theorem 5 (Güven, Kegel, Kuzucuoğlu [1])

Let ξ be an infinite sequence, g ∈ S(ξ) and the type of
principal beginning g0 ∈ Snk be t(g0) = (r1, r2, . . . , rnk ).
Then

CS(ξ)(g) ∼=
nk

Dr
i=1

Ci(Ci ō S(ξi))

where Char(ξi) = Char(ξ)
nk

ri for i = 1, . . . , nk .

If ri = 0, then we assume that corresponding factor is {1}.



Kroshko-Sushchansky studied the diagonal type of
embeddings and they give a complete characterization of
such groups using Steinitz numbers.

Kroshko N. V.; Sushchansky V. I.; Direct Limits of
symmetric and alternating groups with strictly diagonal
embeddings, Arch. Math. 71, 173–182, (1998).



Kroshko-Sushchansky studied the diagonal type of
embeddings and they give a complete characterization of
such groups using Steinitz numbers.

Kroshko N. V.; Sushchansky V. I.; Direct Limits of
symmetric and alternating groups with strictly diagonal
embeddings, Arch. Math. 71, 173–182, (1998).



Theorem 6

(Kuroshko-Sushchansky, 1998)
Two groups S(ξ1) and S(ξ2) are isomorphic if and only if
Char(S(ξ1)) = Char(S(ξ2)).

By using this theorem we prove the following:



Theorem 7

Let H be any finite group. The groups Σξ1(H) and Σξ2(H)
are isomorphic if and only if Char(ξ1) = Char(ξ2)



Güven Ü. B., Kegel O. H., Kuzucuoğlu M.; Centralizers
of subgroups in direct limits of symmetric groups with
strictly diagonal embedding, Comm. in Algebra, 43) (6)
1-15 (2015).

A. Kerber; Representations of Permutation Groups I,
Lecture Notes in Mathematics No: 240, Springer
-Verlag, (1971).

B. V. Oliynyk, V. I. Sushchanskii, Imprimitivity systems
and lattices of normal subgroups in D-Hyperoctahedral
groups, Siberian Math. J. 55, 132–141,(2014).

O. Ore; Theory of monomial groups, Trans. Amer.
Math. Soc. 51, (1942) 15–64.



Thank You


