Homogenous Monomial Groups

Mahmut Kuzucuoğlu

Middle East Technical University
Department of Mathematics, matmah@metu.edu.tr

Joint work with B.V. Oliynyk and V. I. Sushchanskyy
29 March-3 April 2016

Dedicated to the memories of

Guido Zappa, Mario Curzio and
 Wolfgang Kappe

Representations of groups

There are three principal types of representations of groups, each with its particular field of usefulness, are the following:
(1) Permutation representation of groups.
(2) Monomial representation of groups.
(3) Linear or matrix representation of groups.

Representations of groups

There are three principal types of representations of groups, each with its particular field of usefulness, are the following:
(1) Permutation representation of groups.
(2) Monomial representation of groups.
(3) Linear or matrix representation of groups.

Oystein Ore

Representations of groups

Ore continues:
These three types of representations correspond to an embedding of the group in the following groups:
(1) The symmetric group.
(2) The complete monomial group.
(3) The full linear group.

Representations of groups

Ore continues:
These three types of representations correspond to an embedding of the group in the following groups:
(1) The symmetric group.
(2) The complete monomial group.
(3) The full linear group.

The symmetric group and the full linear group have been exhaustively investigated and many of their principal properties are known.

Representations of groups

A similar study does not seem to exist for complete monomial group.

Monomial groups

固 O. Ore; Theory of monomial groups, Trans. Amer. Math. Soc. 51, (1942) 15-64.

Monomial groups

Let us recall the definition of a monomial group.

Monomial groups

Let H ba an arbitrary group and let $n \in \mathbb{N}$. A monomial permutation over H is a linear transformation

$$
\gamma=\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
h_{1} x_{i_{1}} & h_{2} x_{i_{2}} & \ldots & h_{n} x_{i_{n}}
\end{array}\right)
$$

where each variable is changed into some other variable multiplied by an element of H.

Monomial groups

Let H ba an arbitrary group and let $n \in \mathbb{N}$. A monomial permutation over H is a linear transformation

$$
\gamma=\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
h_{1} x_{i_{1}} & h_{2} x_{i_{2}} & \ldots & h_{n} x_{i_{n}}
\end{array}\right)
$$

where each variable is changed into some other variable multiplied by an element of H.

The elements $h_{i} \in H$ will be called factors or multipliers in γ.
The multiplication $h_{i} x_{i j}$ is a formal multiplication satisfying $\left(h_{i} h_{j}\right) x_{k}=h_{i}\left(h_{j} x_{k}\right)$.

Monomial groups

If η is another monomial permutation

$$
\eta=\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
a_{1} x_{j_{1}} & a_{2} x_{j_{2}} & \ldots & a_{n} x_{j_{n}}
\end{array}\right)
$$

where a_{i} 's are elements of H, then

Monomial groups

If η is another monomial permutation

$$
\eta=\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
a_{1} x_{j_{1}} & a_{2} x_{j_{2}} & \ldots & a_{n} x_{j_{n}}
\end{array}\right)
$$

where a_{i} 's are elements of H, then

$$
\eta \gamma=\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
a_{1} x_{j_{1}} & a_{2} x_{j_{2}} & \ldots & a_{n} x_{j_{n}}
\end{array}\right)\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
h_{1} x_{i_{1}} & h_{2} x_{i_{2}} & \ldots & h_{n} x_{i_{n}}
\end{array}\right)
$$

Monomial groups

If η is another monomial permutation

$$
\eta=\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
a_{1} x_{j_{1}} & a_{2} x_{j_{2}} & \ldots & a_{n} x_{j_{n}}
\end{array}\right)
$$

where a_{i} 's are elements of H, then

$$
\eta \gamma=\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
a_{1} x_{j_{1}} & a_{2} x_{j_{2}} & \ldots & a_{n} x_{j_{n}}
\end{array}\right)\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
h_{1} x_{i_{1}} & h_{2} x_{i_{2}} & \ldots & h_{n} x_{i_{n}}
\end{array}\right)
$$

$$
=\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
h_{1} a_{i_{1}} x_{j_{1}} & h_{2} a_{i_{2}} x_{j_{i_{2}}} & \ldots & h_{n} a_{i_{n}} x_{j_{i_{n}}}
\end{array}\right)
$$

Monomial groups

For

$$
\begin{aligned}
\gamma & =\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
h_{1} x_{i_{1}} & h_{2} x_{i_{2}} & \ldots & h_{n} x_{i_{n}}
\end{array}\right) \\
\gamma^{-1} & =\left(\begin{array}{cccc}
x_{i_{1}} & x_{i_{2}} & \ldots & x_{i_{n}} \\
h_{1}^{-1} x_{1} & h_{2}^{-1} x_{2} & \ldots & h_{n}^{-1} x_{n}
\end{array}\right)
\end{aligned}
$$

Monomial groups

The set $\Sigma_{n}(H)$ of all monomial permutations over H of variables x_{1}, \ldots, x_{n} with multiplication defined as above forms a group.

Monomial groups

The set $\Sigma_{n}(H)$ of all monomial permutations over H of variables x_{1}, \ldots, x_{n} with multiplication defined as above forms a group.

This group $\Sigma_{n}(H)$ is called complete monomial group of degree n.

Monomial groups

The set of all monomial permutations of the form

$$
\theta=\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
x_{i_{1}} & x_{i_{2}} & \ldots & x_{i_{n}}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 2 & \ldots & n \\
i_{1} & i_{2} & \ldots & i_{n}
\end{array}\right)
$$

forms a subgroup $\Sigma_{n}(\{1\})$ of $\Sigma_{n}(H)$ and it is isomorphic to the symmetric group on n letters.

Monomial groups

The monomial permutations of the form

$$
\eta=\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
h_{1} x_{1} & h_{2} x_{2} & \ldots & h_{n} x_{n}
\end{array}\right)=\left[h_{1}, h_{2}, \ldots, h_{n}\right]
$$

where $h_{i} \in H$ forms a subgroup of $\Sigma_{n}(H)$ which is isomorphic to the direct product $H \times \ldots \times H$ of n copies of H.

Monomial groups

The monomial permutations of the form

$$
\eta=\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
h_{1} x_{1} & h_{2} x_{2} & \ldots & h_{n} x_{n}
\end{array}\right)=\left[h_{1}, h_{2}, \ldots, h_{n}\right]
$$

where $h_{i} \in H$ forms a subgroup of $\Sigma_{n}(H)$ which is isomorphic to the direct product $H \times \ldots \times H$ of n copies of H.

Every monomial permutation can be written uniquely as a product of monomial permutation and a product (multiplication).

Monomial groups

For example the element γ can be written as

$$
\begin{gathered}
\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
h_{1} x_{i 1} & h_{2} x_{i 2} & \ldots & h_{n} x_{i n}
\end{array}\right)=\left(\begin{array}{ccc}
x_{1} & \ldots & x_{n} \\
x_{i 1} & \ldots & x_{i_{n}}
\end{array}\right)\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
h_{1} x_{1} & h_{2} x_{2} & \ldots & h_{n} x_{n}
\end{array}\right) \\
=\left(\begin{array}{ccc}
x_{1} & \ldots & x_{n} \\
x_{i 1} & \ldots & x_{i_{n}}
\end{array}\right)\left[h_{1}, \ldots, h_{n}\right]
\end{gathered}
$$

Monomial groups

For example the element γ can be written as

$$
\begin{gathered}
\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
h_{1} x_{i 1} & h_{2} x_{i 2} & \ldots & h_{n} x_{i n}
\end{array}\right)=\left(\begin{array}{ccc}
x_{1} & \ldots & x_{n} \\
x_{i 1} & \ldots & x_{i n}
\end{array}\right)\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
h_{1} x_{1} & h_{2} x_{2} & \ldots & h_{n} x_{n}
\end{array}\right) \\
=\left(\begin{array}{ccc}
x_{1} & \ldots & x_{n} \\
x_{i 1} & \ldots & x_{i_{n}}
\end{array}\right)\left[h_{1}, \ldots, h_{n}\right]
\end{gathered}
$$

Moreover one may observe that, when we take the conjugate of a multiplication $\left[h_{1}, \ldots, h_{n}\right]$ by a permutation $\sigma \in \Sigma_{n}(\{1\})$, we have that the coordinates of the multiplication is permuted. Indeed
$\sigma^{-1}\left[h_{1}, \ldots, h_{n}\right] \sigma=\left[h_{1}, \ldots, h_{n}\right]^{\sigma}=\left[h_{1^{\sigma}}, \ldots, h_{n^{\sigma}}\right]$ hence we have

$$
\Sigma_{n}(H) \cong H \succ S_{n} \cong(H \times \ldots H) \rtimes S_{n}
$$

The wreath product is the permutational wreath product.

Monomial groups

Let G be a group which has a subgroup H of index n in G.
Each element g in G permutes the cosets and there are factors coming from H. Namely

Monomial groups

$$
H x_{i} \cdot g=H x_{i} g
$$

where

$$
\left\{H x_{i} \mid i=1, \ldots, n\right\}
$$

is the set of right cosets of H in G and

$$
\left\{x_{i} \mid i=1, \ldots, n\right\}
$$

is the set of right coset representatives of H in G.
Then each $g \in G$ determines a permutation $\pi(g)$ of the right cosets and $x_{i} \cdot g=h_{i}(g) x_{i \pi(g)}$ and n elements $h_{i}(g)$ in H.

Monomial groups

Then the map

$$
G \rightarrow G L(n, \mathbb{Z} H)
$$

$$
g \rightarrow \operatorname{Diag}\left(h_{1}(g), h_{2}(g), \ldots, h_{n}(g)\right) \pi(g)
$$

Monomial groups

defines a monomorphism from G into $G L(n, \mathbb{Z} H)$ where $\mathbb{Z} H$ is the group ring of H over the ring of integers.

Monomial groups

defines a monomorphism from G into $G L(n, \mathbb{Z} H)$ where $\mathbb{Z} H$ is the group ring of H over the ring of integers.
$\Sigma_{n}(H)$ is isomorphic to the subgroup of monomial matrices in $G L(n, \mathbb{Z}(H))$.

Monomial groups

Monomial groups occur also as centralizers of elements in symmetric groups.

Monomial groups

Monomial groups occur also as centralizers of elements in symmetric groups.

Example. Indeed centralizer of an element say $(12)(34)(56) \in S_{6}$ is

$$
C_{S_{6}}((12)(34)(56)) \cong\left(\left(Z_{2} \backslash S_{3}\right) \cong \Sigma_{3}\left(Z_{2}\right)\right.
$$

Monomial groups

Monomial groups occur also as centralizers of elements in symmetric groups.

Example. Indeed centralizer of an element say $(12)(34)(56) \in S_{6}$ is

$$
C_{S_{6}}((12)(34)(56)) \cong\left(\left(Z_{2} \backslash S_{3}\right) \cong \Sigma_{3}\left(Z_{2}\right)\right.
$$

Therefore as Ore suggested monomial groups appear naturally as centralizers of elements in symmetric groups.

Monomial groups

A monomial permutation of the form

$$
\eta=\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{k} \\
a_{1} x_{2} & a_{2} x_{3} & \ldots & a_{k} x_{1}
\end{array}\right)
$$

where $a_{i} \in H$ is called a cycle.

Monomial groups

A monomial permutation of the form

$$
\eta=\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{k} \\
a_{1} x_{2} & a_{2} x_{3} & \ldots & a_{k} x_{1}
\end{array}\right)
$$

where $a_{i} \in H$ is called a cycle.
η is written in the cycle form $\left(a_{1} x_{2}, a_{2} x_{3}, \ldots, a_{k} x_{1}\right)$

Monomial groups

As in the symmetric groups one can write each monomial permutation as a product of commuting disjoint cycles.

Example Let $n=5$ and $H=S_{3}$.

$$
\left.\begin{array}{rl}
& \gamma=\left(\begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
(123) x_{3} & (234) x_{2} & (34) x_{1} & (134) x_{5}
\end{array}(23) x_{4}\right.
\end{array}\right), ~\left(\begin{array}{cc}
x_{1} & x_{3} \\
(123) x_{3} & (34) x_{1}
\end{array}\right)\binom{x_{2}}{(234) x_{2}}\left(\begin{array}{ccc}
x_{4} & x_{5} \\
(134) x_{5} & (23) x_{4}
\end{array}\right) .
$$

Monomial groups

As we mentioned before each monomial can be written as a product of disjoint cycles. Now for each cycle

$$
\gamma=\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{m} \\
c_{1} x_{2} & c_{2} x_{3} & \ldots & c_{m} x_{1}
\end{array}\right)=\left(c_{1} x_{2}, c_{2} x_{3}, \ldots, c_{m} x_{1}\right)
$$

where $c_{i} \in H$, the $m^{t h}$ power of γ is

Monomial groups

As we mentioned before each monomial can be written as a product of disjoint cycles. Now for each cycle

$$
\gamma=\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{m} \\
c_{1} x_{2} & c_{2} x_{3} & \ldots & c_{m} x_{1}
\end{array}\right)=\left(c_{1} x_{2}, c_{2} x_{3}, \ldots, c_{m} x_{1}\right)
$$

where $c_{i} \in H$, the $m^{t h}$ power of γ is

$$
\gamma^{m}=\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{m} \\
\Delta_{1} x_{1} & \Delta_{2} x_{2} & \ldots & \Delta_{m} x_{n}
\end{array}\right)
$$

where

$$
\begin{gathered}
\Delta_{1}=c_{1} c_{2} \ldots c_{m}, \quad \Delta_{2}=c_{2} c_{3} \ldots c_{m} c_{1}, \ldots, \\
\Delta_{m}=c_{m} c_{1} \ldots c_{m-1}
\end{gathered}
$$

Monomial groups

The elements $\Delta_{i} \in H$ are called the determinants of γ. As you observed, the determinants are all conjugate as

$$
\Delta_{2}=c_{1}^{-1} \Delta_{1} c_{1}, \ldots \Delta_{m}=c_{m-1}^{-1} \Delta_{m-1} c_{m-1}, \Delta_{1}=c_{m}^{-1} \Delta_{m} c_{m}
$$

So one observes that for each cycle there is a unique determinant class in H.

Diagonal Embedding of Monomial groups

Let Π be the set of sequences consisting of prime numbers. Let $\xi \in \Pi$ and $\xi=\left(p_{1}, p_{2}, \ldots\right)$ be a sequence consisting of not necessarily distinct primes p_{i}.

From the given sequence ξ we may obtain a divisible sequence $\left(n_{1}, n_{2}, \ldots n_{i}, \ldots\right)$ where

$$
n_{1}=p_{1}, \text { and } n_{i+1}=p_{i+1} n_{i}
$$

we have

$$
n_{i} \mid n_{i+1}
$$

for all $i=1,2, \ldots$.

Diagonal Embedding of Monomial groups

We may embed a complete monomial group $\Sigma_{n_{i}}(H)$ diagonally into $\Sigma_{n_{i+1}}(H)$ as follows.

$$
d^{p_{i+1}}: \Sigma_{n_{i}}(H) \rightarrow \Sigma_{n_{i+1}}(H)
$$

Diagonal Embedding of Monomial groups

Given $\gamma \in \Sigma_{n_{i}}(H)$ where $\gamma=\left(\begin{array}{cccc}x_{1} & x_{2} & \ldots & x_{n_{i}} \\ h_{1} x_{j_{1}} & h_{2} x_{j_{2}} & \ldots & h_{n_{i}} x_{j_{i_{i}}}\end{array}\right)$ we define $d^{p_{i+1}(\gamma)}=$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
\cdots & x_{m m_{i}+k} & \cdots \\
\cdots & n_{k} x_{m m_{i}+j k} & \cdots
\end{array}\right)
\end{aligned}
$$

where $n_{i+1}=n_{i} p_{i+1}$ and $\xi=\left(p_{1}, p_{2}, \ldots p_{i} \ldots\right)$ is a sequence of not necessarily distinct primes. This embedding
corresponds to strictly diagonal embedding of $\Sigma_{n_{i}}(H)$ into $\Sigma_{n_{i+1}}(H)$.

According to the given sequence of primes we continue to embed

$$
d^{p_{i+1}}: \Sigma_{n_{i}}(H) \rightarrow \Sigma_{n_{i+1}}(H)
$$

Then we have the following diagram and we obtain direct systems from the following embeddings

According to the given sequence of primes we continue to embed

$$
d^{p_{i+1}}: \Sigma_{n_{i}}(H) \rightarrow \Sigma_{n_{i+1}}(H)
$$

Then we have the following diagram and we obtain direct systems from the following embeddings

$$
\begin{aligned}
& \{1\} \xrightarrow{d^{P_{1}}} \Sigma_{n_{1}}(H) \xrightarrow{d^{P_{2}}} \Sigma_{n_{2}}(H) \xrightarrow{d^{P_{3}}} \Sigma_{n_{3}}(H) \xrightarrow{d^{P_{4}}} \ldots \\
& \{1\} \xrightarrow{d^{P_{1}}} A_{n_{1}}(H) \xrightarrow{d^{P_{2}}} A_{n_{2}}(H) \xrightarrow{d^{P_{3}}} A_{n_{3}}(H) \xrightarrow{d^{P_{4}}} \ldots
\end{aligned}
$$

where $n_{i}=n_{i-1} p_{i}, \quad i=1,2,3 \ldots$ and $\Sigma_{n_{i}}(H)$ is the complete monomial group on n_{i} letters over the group H and $A_{n_{i}}(H)$ is the monomial alternating group on n_{i} letters over H and $n_{0}=1$.

Monomial groups

The direct limit groups obtained from the above construction are called homogenous monomial group over the group H and denoted by $\Sigma_{\xi}(H)$ and homogenous alternating group $A_{\xi}(H)$ over H respectively.

$$
\Sigma_{\xi}(H) \cong \bigcup_{i=1}^{\infty} \Sigma_{n_{i}}(H) \cong S(\xi) \ltimes B
$$

where B is the base group which is isomorphic to direct product of the group H.

Centralizers of elements in $\Sigma_{\xi}(H)$

Question 1. Find necessary and sufficient condition for two elements to be conjugate in $\Sigma_{\xi}(H)$.

Centralizers of elements in $\Sigma_{\xi}(H)$

Question 1. Find necessary and sufficient condition for two elements to be conjugate in $\Sigma_{\xi}(H)$.

Question 2. Find the structure of centralizer of an element in $\Sigma_{\xi}(H)$.

Centralizers of elements in $\Sigma_{\xi}(H)$

Question 1. Find necessary and sufficient condition for two elements to be conjugate in $\Sigma_{\xi}(H)$.

Question 2. Find the structure of centralizer of an element in $\Sigma_{\xi}(H)$.

Question 3. When two groups $\Sigma_{\xi_{1}}(H)$ and $\Sigma_{\xi_{2}}(H)$ are isomorphic.

Centralizers of elements in $\Sigma_{\xi}(H)$

For Question 1, by taking the conjugate of a cycle

$$
\gamma=\left(\begin{array}{cccc}
x_{1} & x_{i_{1}} & \ldots & x_{i_{m}} \\
c_{1} x_{i_{1}} & c_{2} x_{i_{2}} & \ldots & c_{m} x_{1}
\end{array}\right)
$$

by an element of $\Sigma_{n}(H)$ we may write it in the form

$$
\delta=\left(\begin{array}{llll}
x_{1} & x_{i_{1}} & \ldots & x_{i_{m}} \\
x_{i_{1}} & x_{i_{2}} & \ldots & a x_{1}
\end{array}\right)
$$

where $a \in H$ is an element in the determinant class of γ.

Centralizers of elements in $\Sigma_{\xi}(H)$

For Question 1, by taking the conjugate of a cycle

$$
\gamma=\left(\begin{array}{cccc}
x_{1} & x_{i_{1}} & \ldots & x_{i_{m}} \\
c_{1} x_{i_{1}} & c_{2} x_{i_{2}} & \ldots & c_{m} x_{1}
\end{array}\right)
$$

by an element of $\Sigma_{n}(H)$ we may write it in the form

$$
\delta=\left(\begin{array}{llll}
x_{1} & x_{i_{1}} & \ldots & x_{i_{m}} \\
x_{i_{1}} & x_{i_{2}} & \ldots & a x_{1}
\end{array}\right)
$$

where $a \in H$ is an element in the determinant class of γ. δ is called a normal form of γ.

Centralizers of elements in $\Sigma_{\xi}(H)$

For Question 1, by taking the conjugate of a cycle

$$
\gamma=\left(\begin{array}{cccc}
x_{1} & x_{i_{1}} & \ldots & x_{i_{m}} \\
c_{1} x_{i_{1}} & c_{2} x_{i_{2}} & \ldots & c_{m} x_{1}
\end{array}\right)
$$

by an element of $\Sigma_{n}(H)$ we may write it in the form

$$
\delta=\left(\begin{array}{llll}
x_{1} & x_{i_{1}} & \ldots & x_{i_{m}} \\
x_{i_{1}} & x_{i_{2}} & \ldots & a x_{1}
\end{array}\right)
$$

where $a \in H$ is an element in the determinant class of γ. δ is called a normal form of γ.
Any monomial permutation ρ is similar to a product of cycles without common variables, so $\rho=\gamma_{1} \ldots \gamma_{r}$ where each cycle is in normal form.

Conjugation of elements in $\Sigma_{\xi}(H)$

Lemma 1 (Ore)

The necessary and sufficient condition for two monomial cycles to be conjugate in $\Sigma_{n}(H)$ is that they shall have the same length and the same determinant class.

Conjugation of elements in $\Sigma_{\xi}(H)$

Lemma 1 (Ore)

The necessary and sufficient condition for two monomial cycles to be conjugate in $\Sigma_{n}(H)$ is that they shall have the same length and the same determinant class.

Therefore two monomial permutations are conjugate if and only if the cycles in their cycle decomposition may be made correspond in such a manner that corresponding cycles have he same length and determinant class.

Conjugation of elements

The direct limit group can be written as

$$
\Sigma_{\xi}(H)=\bigcup_{i=1}^{\infty} \Sigma_{n_{i}}(H)
$$

For an element $\gamma \in \Sigma_{\xi}(H)$, we define the short cycle type of γ as the cycle type of γ in the smallest n_{i} where $\gamma \in \Sigma_{n_{i}}(H)$.
For the short cycle type, we put an order according to the length and the determinant class.

Conjugation of elements

By type of a monomial permutation γ we have two variables length of cycle and determinant class.
$t(\gamma)=\left(a_{11} r_{1}, a_{12} r_{1}, \ldots a_{1 i_{1}} r_{1}, a_{21} r_{2}, a_{22} r_{2}, \ldots, a_{2 i} r_{2} \ldots, a a_{l i} r_{1}\right)$
$a_{i j}$ is the representative of conjugacy class in H and r_{i} is the number of cycles of length i in the cycle decomposition of γ with determinant class $a_{i j}$.

Conjugation of elements

Therefore by using the above lemma, we may state the following:

Lemma 2

Two elements of $\Sigma_{\xi}(H)$ are conjugate in $\Sigma_{\xi}(H)$ if and only if they have the same cycle type in $\Sigma_{n_{i}}(H)$ for some n_{i} dividing ξ.

Steinitz numbers

For the centralizers of elements and isomorphism question, we now recall Steinitz numbers (supernatural numbers).

Steinitz numbers

Recall that the formal product $n=2^{r_{2}} 3^{r_{3}} 5^{r_{5}} \ldots$ of prime powers with $0 \leq r_{k} \leq \infty$ for all k is called a Steinitz number (supernatural number).

Steinitz numbers

Recall that the formal product $n=2^{r_{2}} 3^{r_{3}} 5^{r_{5}} \ldots$ of prime powers with $0 \leq r_{k} \leq \infty$ for all k is called a Steinitz number (supernatural number).

The set of Steinitz numbers form a partially ordered set with respect to division, namely if $\alpha=2^{r_{2}} 3^{r_{3}} 5^{r_{5}} \ldots$ and $\beta=2^{s_{2}} 3^{s_{3}} 5^{s_{5}} \ldots$ be two Steinitz numbers, then $\alpha \mid \beta$ if and only if $r_{p} \leq s_{p}$ for all prime p.

Steinitz numbers

Recall that the formal product $n=2^{r_{2}} 3^{r_{3}} 5^{r_{5}} \ldots$ of prime powers with $0 \leq r_{k} \leq \infty$ for all k is called a Steinitz number (supernatural number).

The set of Steinitz numbers form a partially ordered set with respect to division, namely if $\alpha=2^{r_{2}} 3^{r_{3}} 5^{r_{5}} \ldots$ and $\beta=2^{s_{2}}{ }^{s_{3}} 5^{s_{5}} \ldots$ be two Steinitz numbers, then $\alpha \mid \beta$ if and only if $r_{p} \leq s_{p}$ for all prime p.

Moreover they form a lattice if we define meet and join as $\alpha \wedge \beta=2^{\min \left\{r_{2}, s_{2}\right\}} 3^{\min \left\{r_{3}, s_{3}\right\}} 5^{\min \left\{r_{5}, s_{5}\right\}} \ldots$ and $\alpha \vee \beta=2^{\max \left\{r_{2}, s_{2}\right\}} 3^{\max \left\{r_{3}, s_{3}\right\}} 5^{\max \left\{r_{5}, s_{5}\right\}} \ldots$.

Steinitz numbers

For each sequence ξ, we define a Steinitz number

$$
\operatorname{Char}(\xi)=2^{r_{2}} 3^{r_{3}} \ldots p_{i}^{r_{p_{i}}} \ldots
$$

where $r_{p_{i}}$ is the number of times that the prime p_{i} repeat in ξ. If it repeats infinitely often, then we write p_{i}^{∞}.

Steinitz numbers

For each sequence ξ, we define a Steinitz number

$$
\operatorname{Char}(\xi)=2^{r_{2}} 3^{r_{3}} \ldots p_{i}^{r_{p_{i}}} \ldots
$$

where $r_{p_{i}}$ is the number of times that the prime p_{i} repeat in ξ. If it repeats infinitely often, then we write p_{i}^{∞}.

For a group $\Sigma_{\xi}(H)$ obtained from the sequence ξ we define $\operatorname{Char}\left(\Sigma_{\xi}(H)\right)=\operatorname{Char}(\xi)$.

Steinitz numbers

For each Steinitz number ξ we can define a homogenous monomial group $\Sigma_{\xi}(H)$ and for each homogenous monomial group $\Sigma_{\xi}(H)$ we have a Steinitz number.

Centralizers

Since every cycle is conjugate to a cycle in the normal form and centralizers of conjugate elements are conjugate (isomorphic), we may assume that we have the cycles in the normal form.

Centralizers

Since every cycle is conjugate to a cycle in the normal form and centralizers of conjugate elements are conjugate (isomorphic), we may assume that we have the cycles in the normal form.

Moreover as disjoint cycles commute, we find centralizer of a cycle of determinant class $a \in H$ repeated m times, then centralizer of an arbitrary cycle will be direct product of the centralizers for each distinct cycle.

Centralizers

First we have only one cycle.
Let $\gamma=\left(\begin{array}{lll}x_{1} & \ldots & x_{m} \\ x_{2} & \ldots & a x_{1}\end{array}\right)$ be a cycle in the normal form and $a \in H$.
Then the centralizer of γ in $\Sigma_{m}(H)$ is isomorphic to

$$
C_{a}=C_{H}(a)\langle\gamma\rangle
$$

Centralizers

Assume that the cycle is repeated s times with the same determinant class $a \in H$. Then

$$
(\gamma)=
$$

$\underbrace{\left(\begin{array}{cccc}x_{1} & x_{2} & \ldots & x_{m} \\ x_{2} & x_{3} & \ldots & a x_{1}\end{array}\right)\left(\begin{array}{ccc}x_{m+1} & \ldots & x_{2 m} \\ x_{m+2} & \ldots & a x_{m+1}\end{array}\right) \ldots\left(\begin{array}{ccc}x_{(s-1) m+1} & \ldots & x_{s m} \\ x_{(s-1) m+2} & \ldots & a x_{(s-1)+1}\end{array}\right)}_{s-\text { times }}$
Then

$$
C_{\Sigma_{s m}(H)}(\gamma) \cong\left(C_{H}(a)\langle\gamma\rangle\right)\left\langle S_{s} \cong \Sigma_{s}\left(C_{H}(a)\langle\gamma\rangle\right)\right.
$$

Centralizers

Assume that the cycle is repeated s times with the same determinant class $a \in H$. Then

$$
(\gamma)=
$$

$\underbrace{\left(\begin{array}{cccc}x_{1} & x_{2} & \ldots & x_{m} \\ x_{2} & x_{3} & \ldots & a x_{1}\end{array}\right)\left(\begin{array}{ccc}x_{m+1} & \ldots & x_{2 m} \\ x_{m+2} & \ldots & a x_{m+1}\end{array}\right) \ldots\left(\begin{array}{ccc}x_{(s-1) m+1} & \ldots & x_{s m} \\ x_{(s-1) m+2} & \ldots & a x_{(s-1)+1}\end{array}\right)}_{s-\text { times }}$
Then

$$
C_{\Sigma_{s m}(H)}(\gamma) \cong\left(C_{H}(a)\langle\gamma\rangle\right)\left\langle S_{s} \cong \Sigma_{s}\left(C_{H}(a)\langle\gamma\rangle\right)\right.
$$

Then by using this we may find the structure of centralizer of an arbitrary element in $\Sigma_{\xi}(H)$.

Centralizer Special case

Theorem 3

Let γ be an element of $\Sigma_{\xi}(H)$ where γ is a product of cycles with the same determinant class $a \in H$ of length m repeated s times and principal beginning of γ is contained in $\Sigma_{n_{i}}(H)$ where $n_{i}=m s$. Then

$$
C_{\Sigma_{\xi}(H)}(\gamma) \cong C_{a}\left(\Sigma_{\xi_{1}}\left(C_{a}\right)\right)
$$

where $\xi_{1}=\frac{\operatorname{Char}(\xi)}{n_{i}} s$.

Theorem 4

Let ρ be an element of $\Sigma_{\xi}(H)$ with principal beginning is in $\Sigma_{n_{k}}(H)$ with its normal form $\rho=\lambda_{1} \ldots \lambda_{l}$, where $\lambda_{i}=\gamma_{i 1} \ldots \gamma_{i r_{i}}$ where for a fixed i the $\gamma_{i j}$ are the normalized cycles of the same length m_{i} and the determinant class a_{i}. Then the centralizer
$C_{\Sigma_{\xi}(H)}(\rho) \cong C_{a_{1}}\left(\Sigma_{\xi_{1}}\left(C_{a_{1}}\right)\right) \times C_{a_{2}}\left(\Sigma_{\xi_{2}}\left(C_{a_{2}}\right)\right) \times \ldots \times C_{a_{l}}\left(\Sigma_{\xi_{l}}\left(C_{a_{l}}\right)\right)$ where $C_{a_{i}}$ is the centralizer of a single element $\gamma_{i j} \in \Sigma_{m_{i}}(H)$.
The group $C_{a_{i}}$ consists of elements of the form $\kappa=\left[c_{i}\right] \gamma_{i 1}^{j}$ where the element c_{i} belongs to the group $C_{H}\left(a_{i}\right)$ and $\operatorname{Char}\left(\xi_{i}\right)=\frac{\operatorname{Char}(\xi)}{n_{k}} r_{i}$.

Centralizers

Observe that homogenous monomial group over H becomes homogenous symmetric group when $H=\{1\}$.

Therefore our results are compatible with centralizers of elements in homogenous symmetric groups.

Centralizers of elements in homogenous symmetric groups is studied and the following is proved:

Centralizers

Theorem 5 (Güven, Kegel, Kuzucuoğlu [1])

Let ξ be an infinite sequence, $g \in S(\xi)$ and the type of principal beginning $g_{0} \in S_{n_{k}}$ be $t\left(g_{0}\right)=\left(r_{1}, r_{2}, \ldots, r_{n_{k}}\right)$. Then

$$
C_{S(\xi)}(g) \cong{ }_{i=1}^{n_{k}} C_{i}\left(C_{i} \bar{\imath} S\left(\xi_{i}\right)\right)
$$

where $\operatorname{Char}\left(\xi_{i}\right)=\frac{\operatorname{Char}(\xi)}{n_{k}} r_{i} \quad$ for $i=1, \ldots, n_{k}$. If $r_{i}=0$, then we assume that corresponding factor is $\{1\}$.

Kroshko-Sushchansky studied the diagonal type of embeddings and they give a complete characterization of such groups using Steinitz numbers.

Kroshko-Sushchansky studied the diagonal type of embeddings and they give a complete characterization of such groups using Steinitz numbers.

回 Kroshko N. V.; Sushchansky V. I.; Direct Limits of symmetric and alternating groups with strictly diagonal embeddings, Arch. Math. 71, 173-182, (1998).

Theorem 6

(Kuroshko-Sushchansky, 1998)
Two groups $S\left(\xi_{1}\right)$ and $S\left(\xi_{2}\right)$ are isomorphic if and only if $\operatorname{Char}\left(S\left(\xi_{1}\right)\right)=\operatorname{Char}\left(S\left(\xi_{2}\right)\right)$.

By using this theorem we prove the following:

Theorem 7

Let H be any finite group. The groups $\Sigma_{\xi_{1}}(H)$ and $\Sigma_{\xi_{2}}(H)$ are isomorphic if and only if $\operatorname{Char}\left(\xi_{1}\right)=\operatorname{Char}\left(\xi_{2}\right)$

国 Güven Ü．B．，Kegel O．H．，Kuzucuoğlu M．；Centralizers of subgroups in direct limits of symmetric groups with strictly diagonal embedding，Comm．in Algebra，43）（6） 1－15（2015）．

囯 A．Kerber；Representations of Permutation Groups I， Lecture Notes in Mathematics No：240，Springer －Verlag，（1971）．

回 B．V．Oliynyk，V．I．Sushchanskii，Imprimitivity systems and lattices of normal subgroups in D－Hyperoctahedral groups，Siberian Math．J．55，132－141，（2014）．
固 O．Ore；Theory of monomial groups，Trans．Amer． Math．Soc．51，（1942）15－64．

Thank You

