Generators for discrete subgroups of 2－by－2 matrices over rational quaternion algebras

Ann Kiefer
Vrije Universiteit Brussel \＆Universität Bielefeld

Ischi Group Theory 2016 Ischia，2nd April

Goal: Generators for $\mathrm{SL}_{2}\left(\mathcal{H}\left(\frac{a, b}{\mathbb{Z}}\right)\right)$

- consider $M_{2}\left(\mathcal{H}\left(\frac{a, b}{\mathbb{Q}}\right)\right)$ with $a, b<0$
- order $\mathcal{H}\left(\frac{a, b}{\mathbb{Z}}\right)$ in $\mathcal{H}\left(\frac{a, b}{\mathbb{Q}}\right)$

Goal of this work
Finding generators for $\mathrm{SL}_{2}\left(\mathcal{H}\left(\frac{a, b}{\mathbb{Z}}\right)\right)$.

Motivation: Units in Group Rings

- G finite group.

Motivation: Units in Group Rings

- G finite group.

Open Problem: Finding a presentation for a subgroup of finite index of $\mathcal{U}(\mathbb{Z} G)$.

Motivation: Units in Group Rings

- G finite group.

Open Problem: Finding a presentation for a subgroup of finite index of $\mathcal{U}(\mathbb{Z} G)$.

- $\mathbb{Q} G=\prod_{i=1}^{n} M_{n_{i}}\left(D_{i}\right), D_{i}$ a division algebra,
- let \mathcal{O}_{i} be an order in D_{i} for every $1 \leq i \leq n$.

Motivation: Units in Group Rings

- G finite group.

Open Problem: Finding a presentation for a subgroup of finite index of $\mathcal{U}(\mathbb{Z} G)$.

- $\mathbb{Q} G=\prod_{i=1}^{n} M_{n_{i}}\left(D_{i}\right), D_{i}$ a division algebra,
- let \mathcal{O}_{i} be an order in D_{i} for every $1 \leq i \leq n$.

Finding generators and relations for $\mathcal{U}(\mathbb{Z} G)$, up to commensurability, reduces to finding generators and relations for $\mathrm{SL}_{n_{i}}\left(\mathcal{O}_{i}\right)$ for every $1 \leq i \leq n$.

Unsolved cases

three cases that are unsolved

- $M_{2}\left(\mathcal{H}\left(\frac{-1,-1}{\mathbb{Q}}\right)\right)$
- $M_{2}\left(\mathcal{H}\left(\frac{-1,-3}{\mathbb{Q}}\right)\right)$
- $M_{2}\left(\mathcal{H}\left(\frac{-2,-5}{\mathbb{Q}}\right)\right)$

Unsolved cases

three cases that are unsolved

- $M_{2}\left(\mathcal{H}\left(\frac{-1,-1}{\mathbb{Q}}\right)\right)$
- $M_{2}\left(\mathcal{H}\left(\frac{-1,-3}{\mathbb{Q}}\right)\right)$
- $M_{2}\left(\mathcal{H}\left(\frac{-2,-5}{\mathbb{Q}}\right)\right)$

Idea: discontinuous actions on hyperbolic space

Isometries of \mathbb{H}^{2} and \mathbb{H}^{3}

The upper half space model of hyperbolic space

- $\mathbb{H}^{2}=\{z=x+y i \mid x, y \in \mathbb{R}, y>0\}$
- $\mathbb{H}^{3}=\{z=x+y i+r j \mid x, y, r \in \mathbb{R}, r>0\}$
- $\operatorname{PSL}_{2}(\mathbb{R}) \cong \operatorname{ISO}^{+}\left(\mathbb{H}^{2}\right)$
- $\operatorname{PSL}_{2}(\mathbb{C}) \cong \operatorname{ISO}^{+}\left(\mathbb{H}^{3}\right)$

Action on $\mathbb{H}^{2}, \mathbb{H}^{3}$

- $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) z=\frac{a z+b}{c z+d}$, computed in \mathbb{C}
- $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) z=(a z+b)(c z+d)^{-1}$, computed in $\mathcal{H}\left(\frac{-1,-1}{\mathbb{R}}\right)$

Group Actions, Fundamental Domains and Poincaré

Theorem
Let X be a proper metric space. A group Γ of isometries of X acts discontinuously on X if and only if it is a discrete subgroup.

Group Actions, Fundamental Domains and Poincaré

Theorem
Let X be a proper metric space. A group Γ of isometries of X acts discontinuously on X if and only if it is a discrete subgroup.
Definition
A fundamental domain of the discontinuous group $\Gamma<\operatorname{Iso}(X)$ is a closed subset $\mathcal{F} \subseteq X$ satisfying the following conditions:

- the boundary of \mathcal{F} has Lebesgue measure 0 ,
- $g\left(\mathcal{F}^{\circ}\right) \neq h\left(\mathcal{F}^{\circ}\right)$ for $g \neq h$.
- $X=\bigcup_{g \in \Gamma} g(\mathcal{F})$.

Group Actions, Fundamental Domains and Poincaré

Theorem
Let X be a proper metric space. A group Γ of isometries of X acts discontinuously on X if and only if it is a discrete subgroup.

Definition
A fundamental domain of the discontinuous group $\Gamma<\operatorname{Iso}(X)$ is a closed subset $\mathcal{F} \subseteq X$ satisfying the following conditions:

- the boundary of \mathcal{F} has Lebesgue measure 0 ,
- $g\left(\mathcal{F}^{\circ}\right) \neq h\left(\mathcal{F}^{\circ}\right)$ for $g \neq h$.
- $X=\bigcup_{g \in \Gamma} g(\mathcal{F})$.

Theorem (Poincaré)

Let \mathcal{F} be a convex fundamental polyhedron for a discrete group Γ of \mathbb{H}^{n}. Then 「 is generated by

$$
\{g \in \Gamma \mid \mathcal{F} \cap g(\mathcal{F}) \text { is a side of } \mathcal{F}\}
$$

Fundamental Domain of $\mathrm{PSL}_{2}(\mathbb{Z})$

Fundamental Domain of $\operatorname{PSL}_{2}(\mathbb{Z})$ acting on \mathbb{H}^{2}

Dirichlet Algorithm of Finite Covolume (DAFC)

joint work with E. Jespers, S. O. Juriaans, A. De A. E Silva, A. C. Souza Filho
$\Gamma \leq \mathrm{PSL}_{2}(\mathbb{C})$ discrete group of finite covolume

Dirichlet Algorithm of Finite Covolume (DAFC)

joint work with E. Jespers, S. O. Juriaans, A. De A. E Silva, A. C. Souza Filho
$\Gamma \leq \mathrm{PSL}_{2}(\mathbb{C})$ discrete group of finite covolume

- finite-sided convex polyhedron P of finite volume

Dirichlet Algorithm of Finite Covolume (DAFC)

 joint work with E. Jespers, S. O. Juriaans, A. De A. E Silva, A. C. Souza Filho- finite-sided convex polyhedron P of finite volume
- P contains fundamental domain for Γ

Dirichlet Algorithm of Finite Covolume (DAFC) joint work with E. Jespers, S. O. Juriaans, A. De A. E Silva, A. C. Souza Filho

$\Gamma \leq \mathrm{PSL}_{2}(\mathbb{C})$ discrete group of finite covolume

- finite-sided convex polyhedron P of finite volume
- P contains fundamental domain for Γ
- finite set of generators up to finite index for Γ

Output for $\mathrm{PSL}_{2}\left(\mathbb{Z}\left[\frac{1+\sqrt{-23}}{2}\right]\right)$

What about $M_{2}\left(\mathcal{H}\left(\frac{a, b}{\mathbb{Q}}\right)\right)$?

- to begin: $M_{2}\left(\mathcal{H}\left(\frac{-1,-1}{\mathbb{Q}}\right)\right)$
- order: $\operatorname{PSL}_{2}\left(\mathcal{H}\left(\frac{-1,-1}{\mathbb{Z}}\right)\right)$

Main idea: imitate DAFC for $\Gamma \leq \operatorname{PSL}_{2}\left(\mathcal{H}\left(\frac{-1,-1}{\mathbb{R}}\right)\right)$ discrete

What about $M_{2}\left(\mathcal{H}\left(\frac{a, b}{\mathbb{Q}}\right)\right)$?

- to begin: $M_{2}\left(\mathcal{H}\left(\frac{-1,-1}{\mathbb{Q}}\right)\right)$
- order: $\operatorname{PSL}_{2}\left(\mathcal{H}\left(\frac{-1,-1}{\mathbb{Z}}\right)\right)$

Main idea: imitate DAFC for $\Gamma \leq \operatorname{PSL}_{2}\left(\mathcal{H}\left(\frac{-1,-1}{\mathbb{R}}\right)\right)$ discrete

What is $\operatorname{PSL}_{2}\left(\mathcal{H}\left(\frac{-1,-1}{\mathbb{R}}\right)\right)$?
\rightarrow reduced norm 1

The action of $\mathrm{PSL}_{2}\left(\mathcal{H}\left(\frac{-1,-1}{\mathbb{R}}\right)\right)$

- Möbius action on $\mathcal{H}\left(\frac{-1,-1}{\mathbb{R}}\right)$
- action on \mathbb{H}^{5} by Poincaré extension

$$
\rightarrow \operatorname{PSL}_{2}\left(\mathcal{H}\left(\frac{-1,-1}{\mathbb{R}}\right)\right) \cong \operatorname{ISO}^{+}\left(\mathbb{H}^{5}\right) .
$$

However: not very handy to work with.

Clifford Algebras

Definition

The Clifford algebra \mathcal{C}_{n} is the associative algebra over the reals generated by elements $i_{1}, i_{2}, \ldots i_{n-1}$ satisfying

- $i_{h}^{2}=-1$ for every $1 \leq h \leq n-1$
- $i_{h} i_{l}=-i_{l} i_{h}$ for $h \neq 1$.

The Clifford vector space \mathbb{V}^{n}

vector space of all Clifford elements of the form

$$
a_{0}+a_{1} i_{1}+\ldots+a_{n-1} i_{n-1} .
$$

If $a \in \mathbb{V}^{n}$, then $|a|^{2}=a \bar{a}$
\rightarrow every non-zero vector is invertible
\rightarrow the product of non-zero vectors is invertible
Definition
The Clifford group Γ_{n} is the group of all products of non-zero vectors.

$\operatorname{PSL}_{+}\left(\Gamma_{n}\right)$ and its action on \mathbb{H}^{n+1}

$$
\mathrm{SL}_{+}\left(\Gamma_{n}\right)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a d^{*}-b c^{*}=1, a b^{*}, c d^{*}, c^{*} a, d^{*} b \in \mathbb{V}^{n}\right\}
$$

Theorem (Ahlfors '81)
$\operatorname{PSL}_{+}\left(\Gamma_{n}\right) \cong \operatorname{ISO}^{+}\left(\mathbb{H}^{n+1}\right)$.
Möbius action
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) z=(a z+b)(c z+d)^{-1}$, computed in \mathcal{C}_{n+1}
Main strategy: Imitate the DAFC for $\mathrm{PSL}_{+}\left(\Gamma_{4}(\mathbb{Z})\right) \leq \mathrm{PSL}_{+}\left(\Gamma_{4}\right)$, discrete.

To sum up

$$
\operatorname{PSL}_{2}\left(\mathcal{H}\left(\frac{-1,-1}{\mathbb{R}}\right)\right) \cong \operatorname{ISO}^{+}\left(\mathbb{H}^{5}\right) \cong \operatorname{PSL}_{+}\left(\Gamma_{4}\right)
$$

To sum up

$$
\begin{array}{ccc}
\operatorname{PSL}_{2}\left(\mathcal{H}\left(\frac{-1,-1}{\mathbb{R}}\right)\right) \cong \operatorname{ISO}^{+}\left(\mathbb{H}^{5}\right) \cong \operatorname{PSL}_{+}\left(\Gamma_{4}\right) \\
& & \\
\operatorname{SL}_{2}\left(\Gamma_{4}(\mathbb{Q})\right) & \xrightarrow{\sim} & \operatorname{SL}_{2}\left(\mathcal{H}\left(\frac{-1,-1}{\mathbb{Q}}\right)\right) \\
V I & & V I \\
\operatorname{SL}_{2}\left(\Gamma_{4}(\mathbb{Z})\right) & & \operatorname{SL}_{2}\left(\mathcal{H}\left(\frac{-1,-1}{\mathbb{Z}}\right)\right)
\end{array}
$$

To sum up

$$
\operatorname{PSL}_{2}\left(\mathcal{H}\left(\frac{-1,-1}{\mathbb{R}}\right)\right) \cong \operatorname{ISO}^{+}\left(\mathbb{H}^{5}\right) \cong \operatorname{PSL}_{+}\left(\Gamma_{4}\right)
$$

$$
\begin{array}{ccc}
\mathrm{SL}_{2}\left(\Gamma_{4}(\mathbb{Q})\right) & \xrightarrow{\sim} & \mathrm{SL}_{2}\left(\mathcal{H}\left(\frac{-1,-1}{\mathbb{Q}}\right)\right) \\
\mathrm{VI}_{1}(\mathbb{V}) & & \mathrm{SL}_{2}\left(\mathcal{H}\left(\frac{-1,-1}{\mathbb{Z}}\right)\right) \\
\mathrm{SL}_{2}\left(\Gamma_{4}(\mathbb{Z})\right) & \\
\mathcal{H}\left(\frac{-1,-3}{\mathbb{R}}\right) \cong \mathcal{H}\left(\frac{-1,-1}{\mathbb{R}}\right) \cong \mathcal{H}\left(\frac{-2,-5}{\mathbb{R}}\right)
\end{array}
$$

Thank you for your attention.

