On the nonabelian tensor product of cyclic groups of p-power order

Luise-Charlotte Kappe
Binghamton University menger@math.binghamton.edu

Joint work with M.P. Visscher and M.S. Mohamad

History

History

R. Brown, J.-L. Loday, Exision homotopique en basse dimension, C.R. Acad. Sci. Ser. I Math. Paris 298 (1984), 353-356.

History

R. Brown, J.-L. Loday, Exision homotopique en basse dimension, C.R. Acad. Sci. Ser. I Math. Paris 298 (1984), 353-356.
R. Brown, J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology 26 (1987), 311-335.
6

Notation: Let G, H be groups and $G * H$ their free product.

Notation: Let G, H be groups and $G * H$ their free product. Left action:
In $G:{ }^{g} g^{\prime}=g g^{\prime} g^{-1}, g, g^{\prime} \in G$;
In $G * H:{ }^{h} g=h g h^{-1}, g \in G, h \in H$.

Notation: Let G, H be groups and $G * H$ their free product.
Left action:
In $G:{ }^{g} g^{\prime}=g g^{\prime} g^{-1}, g, g^{\prime} \in G$;
In $G * H:{ }^{h} g=h g h^{-1}, g \in G, h \in H$.
Definition. Let G and H be groups which act on each other via automorphisms and which act on themselves via conjugation. The actions are said to be compatible if

$$
{ }^{g} h_{g^{\prime}}=g\left(h^{h}\left(g^{-1} g^{\prime}\right)\right) \text { and }{ }^{h} g h^{\prime}={ }^{h}\left(g\left(h^{-1} h^{\prime}\right)\right)
$$

for all $g, g^{\prime} \in G$ and $h, h^{\prime} \in H$.

Definition. Let G and H be groups acting compatibly on each other. Then $G \otimes H$, the nonabelian tensor product of G and H, is generated by the symbols $g \otimes h$ with relations

Definition. Let G and H be groups acting compatibly on each other. Then $G \otimes H$, the nonabelian tensor product of G and H, is generated by the symbols $g \otimes h$ with relations
$g g^{\prime} \otimes h=\left({ }^{g} g^{\prime} \otimes{ }^{g} h\right)(g \otimes h)$ and
$g \otimes h h^{\prime}=(g \otimes h)\left({ }^{h} g \otimes{ }^{h} h^{\prime}\right)$ for $g, g^{\prime} \in G$ and $h, h^{\prime} \in H$.

Definition. Let G and H be groups acting compatibly on each other. Then $G \otimes H$, the nonabelian tensor product of G and H, is generated by the symbols $g \otimes h$ with relations
$g g^{\prime} \otimes h=\left({ }^{g} g^{\prime} \otimes{ }^{g} h\right)(g \otimes h)$ and
$g \otimes h h^{\prime}=(g \otimes h)\left({ }^{h} g \otimes{ }^{h} h^{\prime}\right)$
for $g, g^{\prime} \in G$ and $h, h^{\prime} \in H$.
If $G=H$ and the actions are conjugation, which are always compatible, we call $G \otimes G$ the nonabelian tensor square of G.
R. Brown, D.L. Johnson, E.F. Robertson, Some Computations of Non-Abelian Tensor Products of Groups, J. of Algebra 111 (1987), 177-202.
R. Brown, D.L. Johnson, E.F. Robertson, Some Computations of Non-Abelian Tensor Products of Groups, J. of Algebra 111 (1987), 177-202.
L.-C. Kappe, Nonabelian Tensor Products of Groups: the Commutator Connection, Proceedings, "Groups St.-Andrews 1997 at Bath", Lecture Notes LMS 261 (1999) 447-454.
F.W. Levi, Groups in which the commutator operation satisfies certain algebraic conditions, J. Indian Math. Soc. 6 (1942), 87-97.
F.W. Levi, Groups in which the commutator operation satisfies certain algebraic conditions, J. Indian Math. Soc. 6 (1942), 87-97.

Theorem 1. For a group G the following conditions are equivalent:
F.W. Levi, Groups in which the commutator operation satisfies certain algebraic conditions, J. Indian Math. Soc. 6 (1942), 87-97.

Theorem 1. For a group G the following conditions are equivalent:
(i) $[[x, y], z]=[x,[y, z]] \forall x, y, z \in G$;
F.W. Levi, Groups in which the commutator operation satisfies certain algebraic conditions, J. Indian Math. Soc. 6 (1942), 87-97.

Theorem 1. For a group G the following conditions are equivalent:
(i) $[[x, y], z]=[x,[y, z]] \forall x, y, z \in G$;
(ii) $[[x, y], z]=1 \forall x, y, z \in G$;
F.W. Levi, Groups in which the commutator operation satisfies certain algebraic conditions, J. Indian Math. Soc. 6 (1942), 87-97.

Theorem 1. For a group G the following conditions are equivalent:
(i) $[[x, y], z]=[x,[y, z]] \forall x, y, z \in G$;
(ii) $[[x, y], z]=1 \forall x, y, z \in G$;
(iii) $[x y, z]=[y, z][x, z]$ and $[x, y z]=[x, y][x, z] \forall x, y, z \in G$;
F.W. Levi, Groups in which the commutator operation satisfies certain algebraic conditions, J. Indian Math. Soc. 6 (1942), 87-97.

Theorem 1. For a group G the following conditions are equivalent:
(i) $[[x, y], z]=[x,[y, z]] \forall x, y, z \in G$;
(ii) $[[x, y], z]=1 \forall x, y, z \in G$;
(iii) $[x y, z]=[y, z][x, z]$ and $[x, y z]=[x, y][x, z] \forall x, y, z \in G$;
(iv) $G^{\prime} \subseteq Z(G)$.
F.W. Levi, Groups in which the commutator operation satisfies certain algebraic conditions, J. Indian Math. Soc. 6 (1942), 87-97.

Theorem 1. For a group G the following conditions are equivalent:
(i) $[[x, y], z]=[x,[y, z]] \forall x, y, z \in G$;
(ii) $[[x, y], z]=1 \forall x, y, z \in G$;
(iii) $[x y, z]=[y, z][x, z]$ and $[x, y z]=[x, y][x, z] \forall x, y, z \in G$;
(iv) $G^{\prime} \subseteq Z(G)$.

Theorem 2. The following are equivalent for a group G and its tensor square:
F.W. Levi, Groups in which the commutator operation satisfies certain algebraic conditions, J. Indian Math. Soc. 6 (1942), 87-97.

Theorem 1. For a group G the following conditions are equivalent:
(i) $[[x, y], z]=[x,[y, z]] \forall x, y, z \in G$;
(ii) $[[x, y], z]=1 \forall x, y, z \in G$;
(iii) $[x y, z]=[y, z][x, z]$ and $[x, y z]=[x, y][x, z] \forall x, y, z \in G$;
(iv) $G^{\prime} \subseteq Z(G)$.

Theorem 2. The following are equivalent for a group G and its tensor square:
(i) $[x, y] \otimes z=x \otimes[y, z] \forall x, y, z \in G$;
F.W. Levi, Groups in which the commutator operation satisfies certain algebraic conditions, J. Indian Math. Soc. 6 (1942), 87-97.

Theorem 1. For a group G the following conditions are equivalent:
(i) $[[x, y], z]=[x,[y, z]] \forall x, y, z \in G$;
(ii) $[[x, y], z]=1 \forall x, y, z \in G$;
(iii) $[x y, z]=[y, z][x, z]$ and $[x, y z]=[x, y][x, z] \forall x, y, z \in G$;
(iv) $G^{\prime} \subseteq Z(G)$.

Theorem 2. The following are equivalent for a group G and its tensor square:
(i) $[x, y] \otimes z=x \otimes[y, z] \forall x, y, z \in G$;
(ii) $[x, y] \otimes z=1_{\otimes} \forall x, y, z \in G$;
F.W. Levi, Groups in which the commutator operation satisfies certain algebraic conditions, J. Indian Math. Soc. 6 (1942), 87-97.

Theorem 1. For a group G the following conditions are equivalent:
(i) $[[x, y], z]=[x,[y, z]] \forall x, y, z \in G$;
(ii) $[[x, y], z]=1 \forall x, y, z \in G$;
(iii) $[x y, z]=[y, z][x, z]$ and $[x, y z]=[x, y][x, z] \forall x, y, z \in G$;
(iv) $G^{\prime} \subseteq Z(G)$.

Theorem 2. The following are equivalent for a group G and its tensor square:
(i) $[x, y] \otimes z=x \otimes[y, z] \forall x, y, z \in G$;
(ii) $[x, y] \otimes z=1_{\otimes} \forall x, y, z \in G$;
(iii) $x y \otimes z=(y \otimes z)(x \otimes z)$ and
$x \otimes y z=(x \otimes y)(x \otimes z) \forall x, y, z \in G ;$
F.W. Levi, Groups in which the commutator operation satisfies certain algebraic conditions, J. Indian Math. Soc. 6 (1942), 87-97.

Theorem 1. For a group G the following conditions are equivalent:
(i) $[[x, y], z]=[x,[y, z]] \forall x, y, z \in G$;
(ii) $[[x, y], z]=1 \forall x, y, z \in G$;
(iii) $[x y, z]=[y, z][x, z]$ and $[x, y z]=[x, y][x, z] \forall x, y, z \in G$;
(iv) $G^{\prime} \subseteq Z(G)$.

Theorem 2. The following are equivalent for a group G and its tensor square:
(i) $[x, y] \otimes z=x \otimes[y, z] \forall x, y, z \in G$;
(ii) $[x, y] \otimes z=1_{\otimes} \forall x, y, z \in G$;
(iii) $x y \otimes z=(y \otimes z)(x \otimes z)$ and
$x \otimes y z=(x \otimes y)(x \otimes z) \forall x, y, z \in G ;$
(iv) $G^{\prime} \subseteq Z^{\otimes}(G)=\left\{g \in G ; g \otimes x=1_{\otimes} \forall x \in G\right\}$;
F.W. Levi, Groups in which the commutator operation satisfies certain algebraic conditions, J. Indian Math. Soc. 6 (1942), 87-97.

Theorem 1. For a group G the following conditions are equivalent:
(i) $[[x, y], z]=[x,[y, z]] \forall x, y, z \in G$;
(ii) $[[x, y], z]=1 \forall x, y, z \in G$;
(iii) $[x y, z]=[y, z][x, z]$ and $[x, y z]=[x, y][x, z] \forall x, y, z \in G$;
(iv) $G^{\prime} \subseteq Z(G)$.

Theorem 2. The following are equivalent for a group G and its tensor square:
(i) $[x, y] \otimes z=x \otimes[y, z] \forall x, y, z \in G$;
(ii) $[x, y] \otimes z=1_{\otimes} \forall x, y, z \in G$;
(iii) $x y \otimes z=(y \otimes z)(x \otimes z)$ and
$x \otimes y z=(x \otimes y)(x \otimes z) \forall x, y, z \in G ;$
(iv) $G^{\prime} \subseteq Z^{\otimes}(G)=\left\{g \in G ; g \otimes x=1_{\otimes} \forall x \in G\right\}$;
(v) $G \otimes G \cong G / G^{\prime} \otimes G / G^{\prime}$.
N.D. Gilbert, P.J. Higgins, The nonabelian tensor product of groups and related constructions, Glasgow Math. J. 31 (1989), 17-29.
N.D. Gilbert, P.J. Higgins, The nonabelian tensor product of groups and related constructions, Glasgow Math. J. 31 (1989), 17-29.

Example 1. Let $G \cong H \cong C_{0}$, the infinite cyclic group, with mutual action being the inversion. Then the actions are compatible and $C_{0} \otimes C_{0} \cong C_{0} \oplus C_{0}$.

Theorem 3. Let C_{n}, C_{m} be cyclic groups of order n, and m, respectively, with $n, m \geq 0$, acting on each other compatibly. Then $C_{n} \otimes C_{m}$ has at most 2 generators.

Proposition 1. Let $G=\langle x\rangle \cong C_{m}, H=\langle y\rangle \cong C_{n}$ and ${ }^{y} x=x^{k}$ and ${ }^{x} y=y$. Then the actions are compatible and $G \otimes H=\langle x \otimes y\rangle$ with $|x \otimes y|=\operatorname{gcd}\left(m, \frac{k^{n}-1}{k-1}\right)$.

Proposition 1. Let $G=\langle x\rangle \cong C_{m}, H=\langle y\rangle \cong C_{n}$ and ${ }^{y} x=x^{k}$ and ${ }^{x} y=y$. Then the actions are compatible and
$G \otimes H=\langle x \otimes y\rangle$ with $|x \otimes y|=\operatorname{gcd}\left(m, \frac{k^{n}-1}{k-1}\right)$.

Proposition 2. Let $G=\langle x\rangle \cong C_{m}$ and $H=\langle y\rangle \cong C_{n}, n, m \geq 0$ and $2|m, 2| n$ with ${ }^{x^{2}} y=y$ and $y^{y^{2}} x=x$. Then the actions are compatible.

Theorem 4. Let $G=\langle x\rangle \cong C_{m}$ and $H=\langle y\rangle \cong C_{n}$. Furthermore, let $\sigma: H \rightarrow \operatorname{Aut}(G)$ and $\tau: G \rightarrow \operatorname{Aut}(H)$ be actions, where H acts on G and G acts on H, respectively, such that

$$
\sigma:{ }^{y} x=x^{s} \text { and } \tau:{ }^{x} y=y^{t}
$$

where s and t are positive integers.

Theorem 4. Let $G=\langle x\rangle \cong C_{m}$ and $H=\langle y\rangle \cong C_{n}$. Furthermore, let $\sigma: H \rightarrow \operatorname{Aut}(G)$ and $\tau: G \rightarrow \operatorname{Aut}(H)$ be actions, where H acts on G and G acts on H, respectively, such that

$$
\sigma:{ }^{y} x=x^{s} \text { and } \tau:{ }^{x} y=y^{t}
$$

where s and t are positive integers. Then the actions are compatible if and only if $s \equiv 1 \bmod |\sigma|$ and $t \equiv 1 \bmod |\tau|$.

Example 2. Let $C_{3}=\langle x\rangle, C_{2}=\langle y\rangle$ and $C_{7}=\langle z\rangle$ be cyclic groups of prime power order.

The following mappings on the generators

$$
{ }^{y} x=x^{2},{ }^{z} x=x,{ }^{x} y=y,{ }^{x} z=z^{4}
$$

extend linearly to actions.

Example 2. Let $C_{3}=\langle x\rangle, C_{2}=\langle y\rangle$ and $C_{7}=\langle z\rangle$ be cyclic groups of prime power order.

The following mappings on the generators

$$
{ }^{y} x=x^{2},{ }^{z} x=x,{ }^{x} y=y,{ }^{x} z=z^{4}
$$

extend linearly to actions. The resulting mutual actions between C_{3} and C_{2} are compatible as well as those between C_{3} and C_{7}.

Example 2. Let $C_{3}=\langle x\rangle, C_{2}=\langle y\rangle$ and $C_{7}=\langle z\rangle$ be cyclic groups of prime power order.

The following mappings on the generators

$$
{ }^{y} x=x^{2},{ }^{z} x=x,{ }^{x} y=y,{ }^{x} z=z^{4}
$$

extend linearly to actions. The resulting mutual actions between C_{3} and C_{2} are compatible as well as those between C_{3} and C_{7}. However, the induced mutual actions between C_{3} and $C_{2} \times C_{7} \cong C_{14}$ are not compatible.

Cyclic groups of p-power order, p an odd prime.

Cyclic groups of p-power order, p an odd prime.

Theorem 5. Let p be an odd prime and $G=\langle g\rangle \cong C_{p^{\alpha}}$, $H=\langle h\rangle \cong C_{p^{\beta}}$, where $\alpha, \beta \geq 2$. Furthermore, let $\sigma \in \operatorname{Aut}(G)$ with $|\sigma|=p^{s}$, where $1 \leq s \leq \alpha-1$ and $\tau \in \operatorname{Aut}(H)$ with $|\tau|=p^{t}$, where $1 \leq t \leq \beta-1$.

Cyclic groups of p-power order, p an odd prime.

Theorem 5. Let p be an odd prime and $G=\langle g\rangle \cong C_{p^{\alpha}}$, $H=\langle h\rangle \cong C_{p^{\beta}}$, where $\alpha, \beta \geq 2$. Furthermore, let $\sigma \in \operatorname{Aut}(G)$ with $|\sigma|=p^{s}$, where $1 \leq s \leq \alpha-1$ and $\tau \in \operatorname{Aut}(H)$ with $|\tau|=p^{t}$, where $1 \leq t \leq \beta-1$. Then (σ, τ) is a compatible pair if and only if $s+t \leq \min (\alpha, \beta)$.

Theorem 6. Let p be an odd prime and $G=\langle g\rangle \cong C_{p^{\alpha}}$, $H=\langle h\rangle \cong C_{p^{\alpha}}$, where $\alpha, \beta \geq 2$, with the actions

$$
y_{x}=x^{i p^{\alpha-s}+1} \quad \text { and } \quad x y=y^{j p^{\beta-t}+1}
$$

where $\operatorname{gcd}(i, p)=\operatorname{gcd}(j, p)=1$ and $s+t \leq \min (\alpha, \beta)$.

Theorem 6. Let p be an odd prime and $G=\langle g\rangle \cong C_{p^{\alpha}}$, $H=\langle h\rangle \cong C_{p^{\alpha}}$, where $\alpha, \beta \geq 2$, with the actions

$$
y_{x}=x^{i p^{\alpha-s}+1} \quad \text { and } \quad x y=y^{j p^{\beta-t}+1}
$$

where $\operatorname{gcd}(i, p)=\operatorname{gcd}(j, p)=1$ and $s+t \leq \min (\alpha, \beta)$. Then $G \otimes H$ is cyclic and a homomorphic image of $C_{p^{\gamma}}$, where $\gamma=\min \{\alpha, \beta\}$.

The case $p=2$:

The case $p=2$:
Theorem 7. Let $G=\langle g\rangle \cong C_{2^{\alpha}}$ and $H=\langle h\rangle \cong C_{2^{\beta}}$ with $\alpha \geq 2$ and $\beta \geq 3$. Furthermore, let $\sigma \in \operatorname{Aut}(G)$ with $|\sigma|=2$ and $\tau \in \operatorname{Aut}(H)$.

The case $p=2$:
Theorem 7. Let $G=\langle g\rangle \cong C_{2^{\alpha}}$ and $H=\langle h\rangle \cong C_{2^{\beta}}$ with $\alpha \geq 2$ and $\beta \geq 3$. Furthermore, let $\sigma \in \operatorname{Aut}(G)$ with $|\sigma|=2$ and $\tau \in \operatorname{Aut}(H)$.
(i) If $\sigma(g)=g^{s}$ with $s \equiv-1 \bmod 2^{\alpha}$ or $s \equiv 2^{m-1}-1 \bmod 2^{\alpha}$, then (σ, τ) is a compatible pair if and only if τ is the trivial automorphism or $|\tau|=2$.

The case $p=2$:
Theorem 7. Let $G=\langle g\rangle \cong C_{2^{\alpha}}$ and $H=\langle h\rangle \cong C_{2^{\beta}}$ with $\alpha \geq 2$ and $\beta \geq 3$. Furthermore, let $\sigma \in \operatorname{Aut}(G)$ with $|\sigma|=2$ and $\tau \in \operatorname{Aut}(H)$.
(i) If $\sigma(g)=g^{s}$ with $s \equiv-1 \bmod 2^{\alpha}$ or $s \equiv 2^{m-1}-1 \bmod 2^{\alpha}$, then (σ, τ) is a compatible pair if and only if τ is the trivial automorphism or $|\tau|=2$.
(ii) If $\sigma(g)=g^{s}$ with $s=2^{\alpha-1}+1$, then (σ, τ) is a compatible pair if and only if $|\tau| \leq 2^{t}$ with $t \leq \alpha-1$, in particular σ is compatible with all $\tau \in \operatorname{Aut}(H)$ provided $\beta \leq \alpha+1$.

Theorem 8. Let $G=\langle g\rangle \cong C_{2^{\alpha}}$ and $H=\langle h\rangle \cong C_{2^{\beta}}$ with $^{h} g=g^{s}$ and ${ }^{g} h=h^{t}$:

Theorem 8. Let $G=\langle g\rangle \cong C_{2^{\alpha}}$ and $H=\langle h\rangle \cong C_{2^{\beta}}$ with ${ }^{h} g=g^{s}$ and ${ }^{g} h=h^{t}$:
(i) if $t=2^{\beta-1}+1, \beta \geq 3$, then

$$
G \otimes H \cong \begin{cases}C_{2^{\alpha}}, & \text { if } s=2^{\alpha-1}-1 \text { or } 2^{\alpha}-1 \\ C_{2}^{\min (\alpha, \beta)}, & \text { if } s=2^{\alpha-1}+1, \alpha \geq 3\end{cases}
$$

Theorem 8. Let $G=\langle g\rangle \cong C_{2^{\alpha}}$ and $H=\langle h\rangle \cong C_{2^{\beta}}$ with ${ }^{h} g=g^{s}$ and ${ }^{g} h=h^{t}$:
(i) if $t=2^{\beta-1}+1, \beta \geq 3$, then

$$
G \otimes H \cong \begin{cases}C_{2^{\alpha}}, & \text { if } s=2^{\alpha-1}-1 \text { or } 2^{\alpha}-1 \\ C_{2}^{\min (\alpha, \beta)}, & \text { if } s=2^{\alpha-1}+1, \alpha \geq 3\end{cases}
$$

(ii) if $t=2^{\beta}-1$, then

$$
G \otimes H \cong \begin{cases}C_{2^{\max (\alpha, \beta)}} \times C_{2^{\min (\alpha, \beta)-1}}, & \text { if } s=2^{\alpha}-1 \\ C_{2^{\max (\alpha-1, \beta)}} \times C_{2^{\min (\alpha-1, \beta)-1}}, & \text { if } s=2^{\alpha-1}-1 \\ & \alpha \geq 3\end{cases}
$$

Theorem 8. Let $G=\langle g\rangle \cong C_{2^{\alpha}}$ and $H=\langle h\rangle \cong C_{2^{\beta}}$ with ${ }^{h} g=g^{s}$ and ${ }^{g} h=h^{t}$:
(i) if $t=2^{\beta-1}+1, \beta \geq 3$, then

$$
G \otimes H \cong \begin{cases}C_{2^{\alpha}}, & \text { if } s=2^{\alpha-1}-1 \text { or } 2^{\alpha}-1 \\ C_{2}^{\min (\alpha, \beta)}, & \text { if } s=2^{\alpha-1}+1, \alpha \geq 3\end{cases}
$$

(ii) if $t=2^{\beta}-1$, then

$$
G \otimes H \cong \begin{cases}C_{2^{\max (\alpha, \beta)}} \times C_{2^{\min (\alpha, \beta)-1}}, & \text { if } s=2^{\alpha}-1 \\ C_{2^{\max (\alpha-1, \beta)}} \times C_{2^{\min (\alpha-1, \beta)-1}}, & \text { if } s=2^{\alpha-1}-1 \\ & \alpha \geq 3\end{cases}
$$

(iii) if $t=2^{\beta-1}-1$ and $s=2^{\alpha-1}-1, \alpha \geq \beta \geq 3$, then

$$
G \otimes H \cong \begin{cases}C_{2^{\max (\alpha, \beta)-1}} \times C_{2^{\min (\alpha, \beta)-1}}, & \text { if } \alpha=\beta \\ C_{2^{\max (\alpha, \beta)}} \times C_{2^{\min (\alpha, \beta)-2}}, & \text { if } \alpha \neq \beta\end{cases}
$$

Theorem 9. Let $G=\langle g\rangle=C_{2^{\alpha}}$ and $H=\langle h\rangle \cong C_{2^{\beta}}$ and let (σ, τ) be a compatible pair with $\sigma(g)=g^{2^{\alpha-1}+1}$. Then $G \otimes H$ is cyclic of 2-power order.

Theorem 10. Let $G=\langle g\rangle \cong C_{2^{\alpha}}$ and $H=\langle h\rangle \cong C_{2^{\beta}}$. Let $\sigma \in \operatorname{Aut}(G)$ with $|\sigma|=2^{r}, r \geq 2$, and $\tau \in \operatorname{Aut}(H)$ with $\alpha \geq 4$, and $\beta \geq 2$.

Theorem 10. Let $G=\langle g\rangle \cong C_{2^{\alpha}}$ and $H=\langle h\rangle \cong C_{2^{\beta}}$. Let $\sigma \in \operatorname{Aut}(G)$ with $|\sigma|=2^{r}, r \geq 2$, and $\tau \in \operatorname{Aut}(H)$ with $\alpha \geq 4$, and $\beta \geq 2$.
(i) If $\sigma(g)=g^{s}$ with $s \equiv(-1)^{i} \cdot 5^{j} \bmod 2^{\alpha}$ and $i=1$, then (σ, τ) is a compatible pair if and only if $\tau(h)=h^{t}$ with $t \equiv 1$ $\bmod 2^{\beta}$ or $t \equiv 2^{\beta-1}+1 \bmod 2^{\beta}$.

Theorem 10. Let $G=\langle g\rangle \cong C_{2^{\alpha}}$ and $H=\langle h\rangle \cong C_{2^{\beta}}$. Let $\sigma \in \operatorname{Aut}(G)$ with $|\sigma|=2^{r}, r \geq 2$, and $\tau \in \operatorname{Aut}(H)$ with $\alpha \geq 4$, and $\beta \geq 2$.
(i) If $\sigma(g)=g^{s}$ with $s \equiv(-1)^{i} \cdot 5^{j} \bmod 2^{\alpha}$ and $i=1$, then (σ, τ) is a compatible pair if and only if $\tau(h)=h^{t}$ with $t \equiv 1$ $\bmod 2^{\beta}$ or $t \equiv 2^{\beta-1}+1 \bmod 2^{\beta}$.
(ii) If $\sigma(g)=g^{s}$ with $s \equiv(-1)^{i} 5^{j}$ mod 2^{α} and $i=0$, then (σ, τ) is a compatible pair if and only if $|\tau| \leq 2^{\alpha-r}$ provided $\beta \leq \alpha-r+2$.

Theorem 11. Let $G=\langle g\rangle \cong C_{2^{\alpha}}$ and $H=\langle h\rangle \cong C_{2^{\beta}}$ and let (σ, τ) be a compatible pair with $|\sigma|=2^{r}$ and $|\tau|=2^{q}, r, q \geq 2$. Then $G \otimes H$ is a homomorphic image of $C_{2 \gamma}$ with $\gamma=\min (\alpha, \beta)$.

