On the nonabelian tensor product of cyclic groups of *p*-power order

Luise-Charlotte Kappe Binghamton University menger@math.binghamton.edu

Joint work with M.P. Visscher and M.S. Mohamad

History

History

R. Brown, J.-L. Loday, Exision homotopique en basse dimension, C.R. Acad. Sci. Ser. I Math. Paris 298 (1984), 353-356.

History

R. Brown, J.-L. Loday, Exision homotopique en basse dimension, C.R. Acad. Sci. Ser. I Math. Paris 298 (1984), 353-356.

R. Brown, J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology 26 (1987), 311-335.

Notation: Let G, H be groups and G * H their free product.

Notation: Let G, H be groups and G * H their free product. Left action:

In $G: {}^{g}g' = gg'g^{-1}, g, g' \in G;$ In $G * H: {}^{h}g = hgh^{-1}, g \in G, h \in H.$ **Notation:** Let *G*, *H* be groups and G * H their free product. Left action: In *G*: ${}^{g}g' = gg'g^{-1}$, $g, g' \in G$;

In G * H: ${}^{h}g = hgh^{-1}$, $g \in G$, $h \in H$.

Definition. Let G and H be groups which act on each other via automorphisms and which act on themselves via conjugation. The actions are said to be compatible if

$${}^{g}{}^{h}g' = {}^{g}({}^{h}({}^{g^{-1}}g')) \text{ and } {}^{h}g h' = {}^{h}({}^{g}({}^{h^{-1}}h'))$$

for all $g, g' \in G$ and $h, h' \in H$.

Definition. Let *G* and *H* be groups acting compatibly on each other. Then $G \otimes H$, the nonabelian tensor product of *G* and *H*, is generated by the symbols $g \otimes h$ with relations

Definition. Let *G* and *H* be groups acting compatibly on each other. Then $G \otimes H$, the nonabelian tensor product of *G* and *H*, is generated by the symbols $g \otimes h$ with relations $gg' \otimes h = ({}^{g}g' \otimes {}^{g}h)(g \otimes h)$ and $g \otimes hh' = (g \otimes h)({}^{h}g \otimes {}^{h}h')$ for $g, g' \in G$ and $h, h' \in H$.

Definition. Let *G* and *H* be groups acting compatibly on each other. Then $G \otimes H$, the nonabelian tensor product of *G* and *H*, is generated by the symbols $g \otimes h$ with relations $gg' \otimes h = ({}^{g}g' \otimes {}^{g}h)(g \otimes h)$ and $g \otimes hh' = (g \otimes h)({}^{h}g \otimes {}^{h}h')$ for $g, g' \in G$ and $h, h' \in H$. If G = H and the actions are conjugation, which are always compatible, we call $G \otimes G$ the nonabelian tensor square of *G*. R. Brown, D.L. Johnson, E.F. Robertson, Some Computations of Non-Abelian Tensor Products of Groups, J. of Algebra 111 (1987), 177-202.

R. Brown, D.L. Johnson, E.F. Robertson, Some Computations of Non-Abelian Tensor Products of Groups, J. of Algebra 111 (1987), 177-202.

L.-C. Kappe, Nonabelian Tensor Products of Groups: the Commutator Connection, Proceedings, "Groups St.-Andrews 1997 at Bath", Lecture Notes LMS 261 (1999) 447-454.

(i)
$$[[x, y], z] = [x, [y, z]] \forall x, y, z \in G;$$

(i)
$$[[x, y], z] = [x, [y, z]] \forall x, y, z \in G;$$

(ii) $[[x, y], z] = 1 \forall x, y, z \in G;$

(i)
$$[[x, y], z] = [x, [y, z]] \forall x, y, z \in G;$$

(ii) $[[x, y], z] = 1 \forall x, y, z \in G;$
(iii) $[xy, z] = [y, z][x, z] \text{ and } [x, yz] = [x, y][x, z] \forall x, y, z \in G;$

(i)
$$[[x, y], z] = [x, [y, z]] \forall x, y, z \in G;$$

(ii) $[[x, y], z] = 1 \forall x, y, z \in G;$
(iii) $[xy, z] = [y, z][x, z] \text{ and } [x, yz] = [x, y][x, z] \forall x, y, z \in G;$
(iv) $G' \subseteq Z(G).$

Theorem 1. For a group *G* the following conditions are equivalent:

(i)
$$[[x, y], z] = [x, [y, z]] \forall x, y, z \in G;$$

(ii) $[[x, y], z] = 1 \forall x, y, z \in G;$
(iii) $[xy, z] = [y, z][x, z] \text{ and } [x, yz] = [x, y][x, z] \forall x, y, z \in G;$
(iv) $G' \subseteq Z(G).$

Theorem 1. For a group *G* the following conditions are equivalent:

(i)
$$[[x, y], z] = [x, [y, z]] \forall x, y, z \in G;$$

(ii) $[[x, y], z] = 1 \forall x, y, z \in G;$
(iii) $[xy, z] = [y, z][x, z] \text{ and } [x, yz] = [x, y][x, z] \forall x, y, z \in G;$
(iv) $G' \subseteq Z(G).$

(i)
$$[x,y] \otimes z = x \otimes [y,z] \ \forall x,y,z \in G;$$

Theorem 1. For a group G the following conditions are equivalent:

(i)
$$[[x, y], z] = [x, [y, z]] \forall x, y, z \in G;$$

(ii) $[[x, y], z] = 1 \forall x, y, z \in G;$
(iii) $[xy, z] = [y, z][x, z] \text{ and } [x, yz] = [x, y][x, z] \forall x, y, z \in G;$
(iv) $G' \subseteq Z(G).$

(i)
$$[x, y] \otimes z = x \otimes [y, z] \quad \forall x, y, z \in G;$$

(ii) $[x, y] \otimes z = 1_{\otimes} \quad \forall x, y, z \in G;$

Theorem 1. For a group G the following conditions are equivalent:

(i)
$$[[x, y], z] = [x, [y, z]] \forall x, y, z \in G;$$

(ii) $[[x, y], z] = 1 \forall x, y, z \in G;$
(iii) $[xy, z] = [y, z][x, z] \text{ and } [x, yz] = [x, y][x, z] \forall x, y, z \in G;$
(iv) $G' \subseteq Z(G).$

(i)
$$[x, y] \otimes z = x \otimes [y, z] \forall x, y, z \in G;$$

(ii) $[x, y] \otimes z = 1_{\otimes} \forall x, y, z \in G;$
(iii) $xy \otimes z = (y \otimes z)(x \otimes z)$ and
 $x \otimes yz = (x \otimes y)(x \otimes z) \forall x, y, z \in G;$

Theorem 1. For a group G the following conditions are equivalent:

(i)
$$[[x, y], z] = [x, [y, z]] \forall x, y, z \in G;$$

(ii) $[[x, y], z] = 1 \forall x, y, z \in G;$
(iii) $[xy, z] = [y, z][x, z] \text{ and } [x, yz] = [x, y][x, z] \forall x, y, z \in G;$
(iv) $G' \subseteq Z(G).$

(i)
$$[x, y] \otimes z = x \otimes [y, z] \quad \forall x, y, z \in G;$$

(ii) $[x, y] \otimes z = 1_{\otimes} \quad \forall x, y, z \in G;$
(iii) $xy \otimes z = (y \otimes z)(x \otimes z) \text{ and}$
 $x \otimes yz = (x \otimes y)(x \otimes z) \quad \forall x, y, z \in G;$
(iv) $G' \subseteq Z^{\otimes}(G) = \{g \in G; g \otimes x = 1_{\otimes} \quad \forall x \in G\};$

Theorem 1. For a group G the following conditions are equivalent:

(i)
$$[[x, y], z] = [x, [y, z]] \forall x, y, z \in G;$$

(ii) $[[x, y], z] = 1 \forall x, y, z \in G;$
(iii) $[xy, z] = [y, z][x, z] \text{ and } [x, yz] = [x, y][x, z] \forall x, y, z \in G;$
(iv) $G' \subseteq Z(G).$

(i)
$$[x, y] \otimes z = x \otimes [y, z] \forall x, y, z \in G;$$

(ii) $[x, y] \otimes z = 1_{\otimes} \forall x, y, z \in G;$
(iii) $xy \otimes z = (y \otimes z)(x \otimes z)$ and
 $x \otimes yz = (x \otimes y)(x \otimes z) \forall x, y, z \in G;$
(iv) $G' \subseteq Z^{\otimes}(G) = \{g \in G; g \otimes x = 1_{\otimes} \forall x \in G\};$
(v) $G \otimes G \cong G/G' \otimes G/G'.$

N.D. Gilbert, P.J. Higgins, The nonabelian tensor product of groups and related constructions, Glasgow Math. J. 31 (1989), 17-29.

N.D. Gilbert, P.J. Higgins, The nonabelian tensor product of groups and related constructions, Glasgow Math. J. 31 (1989), 17-29.

Example 1. Let $G \cong H \cong C_0$, the infinite cyclic group, with mutual action being the inversion. Then the actions are compatible and $C_0 \otimes C_0 \cong C_0 \oplus C_0$.

Theorem 3. Let C_n , C_m be cyclic groups of order n, and m, respectively, with $n, m \ge 0$, acting on each other compatibly. Then $C_n \otimes C_m$ has at most 2 generators.

Proposition 1. Let $G = \langle x \rangle \cong C_m$, $H = \langle y \rangle \cong C_n$ and ${}^y x = x^k$ and ${}^x y = y$. Then the actions are compatible and $G \otimes H = \langle x \otimes y \rangle$ with $|x \otimes y| = gcd\left(m, \frac{k^n - 1}{k - 1}\right)$. **Proposition 1.** Let $G = \langle x \rangle \cong C_m$, $H = \langle y \rangle \cong C_n$ and ${}^y x = x^k$ and ${}^x y = y$. Then the actions are compatible and $G \otimes H = \langle x \otimes y \rangle$ with $|x \otimes y| = gcd\left(m, \frac{k^n - 1}{k - 1}\right)$.

Proposition 2. Let $G = \langle x \rangle \cong C_m$ and $H = \langle y \rangle \cong C_n$, $n, m \ge 0$ and 2|m, 2|n with $x^2y = y$ and $y^2x = x$. Then the actions are compatible.

Theorem 4. Let $G = \langle x \rangle \cong C_m$ and $H = \langle y \rangle \cong C_n$. Furthermore, let $\sigma : H \to Aut(G)$ and $\tau : G \to Aut(H)$ be actions, where H acts on G and G acts on H, respectively, such that

$$\sigma$$
: ${}^{y}x = x^{s}$ and τ : ${}^{x}y = y^{t}$,

where s and t are positive integers.

Theorem 4. Let $G = \langle x \rangle \cong C_m$ and $H = \langle y \rangle \cong C_n$. Furthermore, let $\sigma : H \to Aut(G)$ and $\tau : G \to Aut(H)$ be actions, where H acts on G and G acts on H, respectively, such that

$$\sigma: {}^{y}x = x^{s}$$
 and $\tau: {}^{x}y = y^{t}$,

where s and t are positive integers. Then the actions are compatible if and only if $s \equiv 1 \mod |\sigma|$ and $t \equiv 1 \mod |\tau|$.

Example 2. Let $C_3 = \langle x \rangle$, $C_2 = \langle y \rangle$ and $C_7 = \langle z \rangle$ be cyclic groups of prime power order.

The following mappings on the generators

$$y^{y}x = x^{2}, \ ^{z}x = x, \ ^{x}y = y, \ ^{x}z = z^{4};$$

extend linearly to actions.

Example 2. Let $C_3 = \langle x \rangle$, $C_2 = \langle y \rangle$ and $C_7 = \langle z \rangle$ be cyclic groups of prime power order.

The following mappings on the generators

$$y^{y}x = x^{2}, \ ^{z}x = x, \ ^{x}y = y, \ ^{x}z = z^{4};$$

extend linearly to actions. The resulting mutual actions between C_3 and C_2 are compatible as well as those between C_3 and C_7 .

Example 2. Let $C_3 = \langle x \rangle$, $C_2 = \langle y \rangle$ and $C_7 = \langle z \rangle$ be cyclic groups of prime power order.

The following mappings on the generators

$$y^{y}x = x^{2}, \ ^{z}x = x, \ ^{x}y = y, \ ^{x}z = z^{4};$$

extend linearly to actions. The resulting mutual actions between C_3 and C_2 are compatible as well as those between C_3 and C_7 . However, the induced mutual actions between C_3 and $C_2 \times C_7 \cong C_{14}$ are not compatible. Cyclic groups of *p*-power order, *p* an odd prime.

Cyclic groups of *p*-power order, *p* an odd prime.

Theorem 5. Let p be an odd prime and $G = \langle g \rangle \cong C_{p^{\alpha}}$, $H = \langle h \rangle \cong C_{p^{\beta}}$, where $\alpha, \beta \ge 2$. Furthermore, let $\sigma \in Aut(G)$ with $|\sigma| = p^{s}$, where $1 \le s \le \alpha - 1$ and $\tau \in Aut(H)$ with $|\tau| = p^{t}$, where $1 \le t \le \beta - 1$.

Cyclic groups of *p*-power order, *p* an odd prime.

Theorem 5. Let *p* be an odd prime and $G = \langle g \rangle \cong C_{p^{\alpha}}$, $H = \langle h \rangle \cong C_{p^{\beta}}$, where $\alpha, \beta \ge 2$. Furthermore, let $\sigma \in Aut(G)$ with $|\sigma| = p^{s}$, where $1 \le s \le \alpha - 1$ and $\tau \in Aut(H)$ with $|\tau| = p^{t}$, where $1 \le t \le \beta - 1$. Then (σ, τ) is a compatible pair if and only if $s + t \le \min(\alpha, \beta)$. **Theorem 6.** Let *p* be an odd prime and $G = \langle g \rangle \cong C_{p^{\alpha}}$, $H = \langle h \rangle \cong C_{p^{\alpha}}$, where $\alpha, \beta \ge 2$, with the actions

$$y_x = x^{ip^{lpha-s}+1}$$
 and $x_y = y^{jp^{eta-t}+1}$

where gcd(i, p) = gcd(j, p) = 1 and $s + t \le \min(\alpha, \beta)$.

Theorem 6. Let *p* be an odd prime and $G = \langle g \rangle \cong C_{p^{\alpha}}$, $H = \langle h \rangle \cong C_{p^{\alpha}}$, where $\alpha, \beta \ge 2$, with the actions

$$y_{x} = x^{ip^{lpha-s}+1}$$
 and $x_{y} = y^{jp^{eta-t}+1}$

where gcd(i, p) = gcd(j, p) = 1 and $s + t \le \min(\alpha, \beta)$. Then $G \otimes H$ is cyclic and a homomorphic image of $C_{p^{\gamma}}$, where $\gamma = \min\{\alpha, \beta\}$.

Theorem 7. Let $G = \langle g \rangle \cong C_{2^{\alpha}}$ and $H = \langle h \rangle \cong C_{2^{\beta}}$ with $\alpha \ge 2$ and $\beta \ge 3$. Furthermore, let $\sigma \in Aut(G)$ with $|\sigma| = 2$ and $\tau \in Aut(H)$.

Theorem 7. Let $G = \langle g \rangle \cong C_{2^{\alpha}}$ and $H = \langle h \rangle \cong C_{2^{\beta}}$ with $\alpha \ge 2$ and $\beta \ge 3$. Furthermore, let $\sigma \in Aut(G)$ with $|\sigma| = 2$ and $\tau \in Aut(H)$.

(i) If $\sigma(g) = g^s$ with $s \equiv -1 \mod 2^{\alpha}$ or $s \equiv 2^{m-1} - 1 \mod 2^{\alpha}$, then (σ, τ) is a compatible pair if and only if τ is the trivial automorphism or $|\tau| = 2$.

Theorem 7. Let $G = \langle g \rangle \cong C_{2^{\alpha}}$ and $H = \langle h \rangle \cong C_{2^{\beta}}$ with $\alpha \ge 2$ and $\beta \ge 3$. Furthermore, let $\sigma \in Aut(G)$ with $|\sigma| = 2$ and $\tau \in Aut(H)$.

- (i) If $\sigma(g) = g^s$ with $s \equiv -1 \mod 2^{\alpha}$ or $s \equiv 2^{m-1} 1 \mod 2^{\alpha}$, then (σ, τ) is a compatible pair if and only if τ is the trivial automorphism or $|\tau| = 2$.
- (ii) If $\sigma(g) = g^s$ with $s = 2^{\alpha-1} + 1$, then (σ, τ) is a compatible pair if and only if $|\tau| \le 2^t$ with $t \le \alpha 1$, in particular σ is compatible with all $\tau \in Aut(H)$ provided $\beta \le \alpha + 1$.

Theorem 8. Let $G = \langle g \rangle \cong C_{2^{\alpha}}$ and $H = \langle h \rangle \cong C_{2^{\beta}}$ with ${}^{h}g = g^{s}$ and ${}^{g}h = h^{t}$:

Theorem 8. Let $G = \langle g \rangle \cong C_{2^{\alpha}}$ and $H = \langle h \rangle \cong C_{2^{\beta}}$ with ${}^{h}g = g^{s}$ and ${}^{g}h = h^{t}$: (i) if $t = 2^{\beta-1} + 1$, $\beta \ge 3$, then $G \otimes H \cong \begin{cases} C_{2^{\alpha}}, & \text{if } s = 2^{\alpha-1} - 1 \text{ or } 2^{\alpha} - 1, \\ C_{2}^{\min(\alpha,\beta)}, & \text{if } s = 2^{\alpha-1} + 1, \alpha \ge 3; \end{cases}$

Theorem 8. Let
$$G = \langle g \rangle \cong C_{2^{\alpha}}$$
 and $H = \langle h \rangle \cong C_{2^{\beta}}$ with ${}^{h}g = g^{s}$
and ${}^{g}h = h^{t}$:
(i) if $t = 2^{\beta-1} + 1$, $\beta \ge 3$, then
 $G \otimes H \cong \begin{cases} C_{2^{\alpha}}, & \text{if } s = 2^{\alpha-1} - 1 \text{ or } 2^{\alpha} - 1, \\ C_{2}^{\min(\alpha,\beta)}, & \text{if } s = 2^{\alpha-1} + 1, \alpha \ge 3; \end{cases}$

(ii) if
$$t = 2^{\beta} - 1$$
, then

$$G \otimes H \cong \begin{cases} C_{2^{\max(\alpha,\beta)}} \times C_{2^{\min(\alpha,\beta)-1}}, & \text{if } s = 2^{\alpha} - 1, \\ C_{2^{\max(\alpha-1,\beta)}} \times C_{2^{\min(\alpha-1,\beta)-1}}, & \text{if } s = 2^{\alpha-1} - 1, \\ \alpha \ge 3; \end{cases}$$

Theorem 8. Let
$$G = \langle g \rangle \cong C_{2^{\alpha}}$$
 and $H = \langle h \rangle \cong C_{2^{\beta}}$ with ${}^{h}g = g^{s}$
and ${}^{g}h = h^{t}$:
(i) if $t = 2^{\beta-1} + 1$, $\beta \ge 3$, then
 $G \otimes H \cong \begin{cases} C_{2^{\alpha}}, & \text{if } s = 2^{\alpha-1} - 1 \text{ or } 2^{\alpha} - 1, \\ C_{2}^{\min(\alpha,\beta)}, & \text{if } s = 2^{\alpha-1} + 1, \alpha \ge 3; \end{cases}$

(ii) if $t = 2^{\beta} - 1$, then

$$G \otimes H \cong \begin{cases} C_{2^{\max(\alpha,\beta)}} \times C_{2^{\min(\alpha,\beta)-1}}, & \text{if } s = 2^{\alpha} - 1, \\ C_{2^{\max(\alpha-1,\beta)}} \times C_{2^{\min(\alpha-1,\beta)-1}}, & \text{if } s = 2^{\alpha-1} - 1, \\ \alpha \ge 3; \end{cases}$$

(iii) if $t = 2^{\beta-1} - 1$ and $s = 2^{\alpha-1} - 1$, $\alpha \ge \beta \ge 3$, then

$$G \otimes H \cong \begin{cases} C_{2^{\max(\alpha,\beta)-1}} \times C_{2^{\min(\alpha,\beta)-1}}, & \text{if } \alpha = \beta, \\ C_{2^{\max(\alpha,\beta)}} \times C_{2^{\min(\alpha,\beta)-2}}, & \text{if } \alpha \neq \beta. \end{cases}$$

Theorem 9. Let $G = \langle g \rangle = C_{2^{\alpha}}$ and $H = \langle h \rangle \cong C_{2^{\beta}}$ and let (σ, τ) be a compatible pair with $\sigma(g) = g^{2^{\alpha-1}+1}$. Then $G \otimes H$ is cyclic of 2-power order.

Theorem 10. Let $G = \langle g \rangle \cong C_{2^{\alpha}}$ and $H = \langle h \rangle \cong C_{2^{\beta}}$. Let $\sigma \in Aut(G)$ with $|\sigma| = 2^{r}$, $r \ge 2$, and $\tau \in Aut(H)$ with $\alpha \ge 4$, and $\beta \ge 2$.

Theorem 10. Let $G = \langle g \rangle \cong C_{2^{\alpha}}$ and $H = \langle h \rangle \cong C_{2^{\beta}}$. Let $\sigma \in Aut(G)$ with $|\sigma| = 2^r$, $r \ge 2$, and $\tau \in Aut(H)$ with $\alpha \ge 4$, and $\beta \ge 2$.

(i) If $\sigma(g) = g^s$ with $s \equiv (-1)^i \cdot 5^j \mod 2^{\alpha}$ and i = 1, then (σ, τ) is a compatible pair if and only if $\tau(h) = h^t$ with $t \equiv 1 \mod 2^{\beta}$ or $t \equiv 2^{\beta-1} + 1 \mod 2^{\beta}$.

Theorem 10. Let $G = \langle g \rangle \cong C_{2^{\alpha}}$ and $H = \langle h \rangle \cong C_{2^{\beta}}$. Let $\sigma \in Aut(G)$ with $|\sigma| = 2^r$, $r \ge 2$, and $\tau \in Aut(H)$ with $\alpha \ge 4$, and $\beta \ge 2$.

(i) If
$$\sigma(g) = g^s$$
 with $s \equiv (-1)^i \cdot 5^j \mod 2^{\alpha}$ and $i = 1$, then (σ, τ) is a compatible pair if and only if $\tau(h) = h^t$ with $t \equiv 1 \mod 2^{\beta}$ or $t \equiv 2^{\beta-1} + 1 \mod 2^{\beta}$.

(ii) If
$$\sigma(g) = g^s$$
 with $s \equiv (-1)^i 5^j \mod 2^{\alpha}$ and $i = 0$, then (σ, τ) is a compatible pair if and only if $|\tau| \le 2^{\alpha-r}$ provided $\beta \le \alpha - r + 2$.

Theorem 11. Let $G = \langle g \rangle \cong C_{2^{\alpha}}$ and $H = \langle h \rangle \cong C_{2^{\beta}}$ and let (σ, τ) be a compatible pair with $|\sigma| = 2^r$ and $|\tau| = 2^q$, $r, q \ge 2$. Then $G \otimes H$ is a homomorphic image of $C_{2^{\gamma}}$ with $\gamma = \min(\alpha, \beta)$.