Pro-*p* methods in the theory of finite *p*-groups

Andrei Jaikin Zapirain Universidad Autónoma de Madrid & ICMAT

ISCHIA GROUP THEORY 2016 Ischia, April 2, 2016

Introduction

Part I: a positive answer Part II: a negative answer

Outline

2 Part I: a positive answer

General setting

\mathcal{P} is a property of finite *p*-groups

General question

Is there only a finite number of finite p-groups satisfying the property \mathcal{P} ?

Part I: The use of pro-*p* groups to give a positive answer.

General setting

\mathcal{P} is a property of finite *p*-groups

General question

Is there only a finite number of finite *p*-groups satisfying the property \mathcal{P} ?

Part I: The use of pro-*p* groups to give a positive answer.

General setting

\mathcal{P} is a property of finite *p*-groups

General question

Is there only a finite number of finite *p*-groups satisfying the property \mathcal{P} ?

Part I: The use of pro-p groups to give a positive answer.

General setting

\mathcal{P} is a property of finite *p*-groups

General question

Is there only a finite number of finite *p*-groups satisfying the property \mathcal{P} ?

Part I: The use of pro-p groups to give a positive answer.

Outline

Andrei Jaikin, UAM & ICMAT Pro-p methods in the theory of finite p-groups

Constructing a pro-p group

${\mathcal P}$ is a property of finite ${\it p}\mbox{-}{\it groups}$

 $\mathcal{F} = \{ \text{ finite } p \text{-groups } G \text{ satisfying } \mathcal{P} \}$

By way of contradiction, we assume that ${\mathcal F}$ is infinite

Our goals are

First, we want to construct an infinite "nice" pro- ρ group F such that infinitely many finite quotients of F are in F.

Constructing a pro-p group

\mathcal{P} is a property of finite *p*-groups $\mathcal{F} = \{ \text{ finite } p \text{-groups } G \text{ satisfying } \mathcal{P} \}$

By way of contradiction, we assume that ${\mathcal F}$ is infinite

Our goals are

First, we want to construct an infinite "nice" pro-p group F such that infinitely many finite quotients of F are in \mathcal{F} .

Constructing a pro-p group

\mathcal{P} is a property of finite *p*-groups $\mathcal{F} = \{ \text{ finite } p \text{-groups } G \text{ satisfying } \mathcal{P} \}$

By way of contradiction, we assume that ${\mathcal F}$ is infinite

Our goals are

First, we want to construct an infinite "nice" pro-p group F such that infinitely many finite quotients of F are in \mathcal{F} .

Constructing a pro-p group

\mathcal{P} is a property of finite *p*-groups $\mathcal{F} = \{ \text{ finite } p \text{-groups } G \text{ satisfying } \mathcal{P} \}$

By way of contradiction, we assume that ${\mathcal F}$ is infinite

Our goals are

First, we want to construct an infinite "nice" pro-p group F such that infinitely many finite quotients of F are in \mathcal{F} .

Constructing a pro-p group

 \mathcal{P} is a property of finite *p*-groups $\mathcal{F} = \{ \text{ finite } p \text{-groups } G \text{ satisfying } \mathcal{P} \}$

By way of contradiction, we assume that ${\mathcal F}$ is infinite

Our goals are

First, we want to construct an infinite "nice" pro-p group F such that infinitely many finite quotients of F are in \mathcal{F} .

Constructing a pro-p group

 \mathcal{P} is a property of finite *p*-groups $\mathcal{F} = \{ \text{ finite } p \text{-groups } G \text{ satisfying } \mathcal{P} \}$

By way of contradiction, we assume that ${\mathcal F}$ is infinite

Our goals are

First, we want to construct an infinite "nice" pro-p group F such that infinitely many finite quotients of F are in \mathcal{F} .

Constructing a pro-p group

G is a finite p-group, the lower p-central series:

 $\lambda_1(G) = G, \ \lambda_{i+1}(G) = [\lambda_i(G), G]\lambda_i(G)^p.$

 $\Gamma_{\mathcal{F}}$ is a directed locally finite forest: $V(\Gamma_{\mathcal{F}}) = \{\text{isomorphism classes of non-trivial groups from } \mathcal{F}\},\$ $G_1 \to G_2$ ((G_1, G_2) is an edge) if there exists k such that

 $G_1 \cong G_2/\lambda_k(G_2), \lambda_k(G_2) \neq \{1\}, \lambda_{k+1}(G_2) = \{1\}$

 G_2 is a **son** of G_1

A finite path: $G_0 \to G_1 \to \ldots \to G_k$. G_k is a descendant of G_0 . An infinite path: $G_0 \to G_1 \to G_2 \to \ldots \to G_k \to \ldots$

Constructing a pro-p group

G is a finite p-group, the lower p-central series:

$$\lambda_1(G) = G, \ \lambda_{i+1}(G) = [\lambda_i(G), G]\lambda_i(G)^p.$$

 $\Gamma_{\mathcal{F}}$ is a directed locally finite forest: $V(\Gamma_{\mathcal{F}}) = \{\text{isomorphism classes of non-trivial groups from } \mathcal{F}\},\$ $G_1 \to G_2$ ((G_1, G_2) is an edge) if there exists k such that

 $G_1 \cong G_2/\lambda_k(G_2), \lambda_k(G_2) \neq \{1\}, \lambda_{k+1}(G_2) = \{1\}$

 G_2 is a **son** of G_1

A finite path: $G_0 \to G_1 \to \ldots \to G_k$. G_k is a descendant of G_0 . An infinite path: $G_0 \to G_1 \to G_2 \to \ldots \to G_k \to \ldots$

Constructing a pro-p group

G is a finite p-group, the lower p-central series:

$$\lambda_1(G) = G, \ \lambda_{i+1}(G) = [\lambda_i(G), G]\lambda_i(G)^p.$$

 $\Gamma_{\mathcal{F}}$ is a directed locally finite forest: $V(\Gamma_{\mathcal{F}}) = \{\text{isomorphism classes of non-trivial groups from } \mathcal{F}\},\$ $G_1 \to G_2$ ((G_1, G_2) is an edge) if there exists k such that

 $G_1 \cong G_2/\lambda_k(G_2), \lambda_k(G_2) \neq \{1\}, \lambda_{k+1}(G_2) = \{1\}$

 G_2 is a **son** of G_1

Constructing a pro-p group

G is a finite p-group, the lower p-central series:

$$\lambda_1(G) = G, \ \lambda_{i+1}(G) = [\lambda_i(G), G]\lambda_i(G)^p.$$

 $\Gamma_{\mathcal{F}}$ is a directed locally finite forest: $V(\Gamma_{\mathcal{F}}) = \{\text{isomorphism classes of non-trivial groups from } \mathcal{F}\},\$ $G_1 \to G_2$ ((G_1, G_2) is an edge) if there exists k such that

$$\mathsf{G}_1 \cong \mathsf{G}_2/\lambda_k(\mathsf{G}_2), \lambda_k(\mathsf{G}_2) \neq \{1\}, \lambda_{k+1}(\mathsf{G}_2) = \{1\}$$

 G_2 is a **son** of G_1

Constructing a pro-p group

G is a finite p-group, the lower p-central series:

$$\lambda_1(G) = G, \ \lambda_{i+1}(G) = [\lambda_i(G), G]\lambda_i(G)^p.$$

 $\Gamma_{\mathcal{F}}$ is a directed locally finite forest: $V(\Gamma_{\mathcal{F}}) = \{\text{isomorphism classes of non-trivial groups from } \mathcal{F}\},\$ $G_1 \to G_2$ ((G_1, G_2) is an edge) if there exists k such that

$$\mathsf{G}_1 \cong \mathsf{G}_2/\lambda_k(\mathsf{G}_2), \lambda_k(\mathsf{G}_2) \neq \{1\}, \lambda_{k+1}(\mathsf{G}_2) = \{1\}$$

 G_2 is a **son** of G_1

Constructing a pro-p group

G is a finite p-group, the lower p-central series:

$$\lambda_1(G) = G, \ \lambda_{i+1}(G) = [\lambda_i(G), G]\lambda_i(G)^p.$$

 $\Gamma_{\mathcal{F}}$ is a directed locally finite forest: $V(\Gamma_{\mathcal{F}}) = \{\text{isomorphism classes of non-trivial groups from } \mathcal{F}\},\$ $G_1 \to G_2$ ((G_1, G_2) is an edge) if there exists k such that

$$\mathsf{G}_1 \cong \mathsf{G}_2/\lambda_k(\mathsf{G}_2), \lambda_k(\mathsf{G}_2) \neq \{1\}, \lambda_{k+1}(\mathsf{G}_2) = \{1\}$$

 G_2 is a **son** of G_1

Constructing a pro-*p* group

G is a finite p-group, the lower p-central series:

$$\lambda_1(G) = G, \ \lambda_{i+1}(G) = [\lambda_i(G), G]\lambda_i(G)^p.$$

 $\Gamma_{\mathcal{F}}$ is a directed locally finite forest: $V(\Gamma_{\mathcal{F}}) = \{\text{isomorphism classes of non-trivial groups from } \mathcal{F}\},\$ $G_1 \to G_2$ ((G_1, G_2) is an edge) if there exists k such that

$$\mathsf{G}_1 \cong \mathsf{G}_2/\lambda_k(\mathsf{G}_2), \lambda_k(\mathsf{G}_2) \neq \{1\}, \lambda_{k+1}(\mathsf{G}_2) = \{1\}$$

 G_2 is a **son** of G_1

Constructing a pro-p group

$G\in \mathcal{F},\ \Gamma_G=\{ {\rm descendents}\ {\rm of}\ G\}$

Proposition

Assume that

1 $\Gamma_{\mathcal{F}}$ is infinite and

② $\Gamma_{\mathcal{F}}$ is a union of a finite number of Γ_G $(G \in \mathcal{F})$.

Then there exists an infinite path in Γ .

Proof: There exists G_0 such that Γ_{G_0} is infinite. Γ_{G_1} is infinite for some son G_1 of G_0 . $G_0 \rightarrow G_1 \rightarrow \ldots \rightarrow G_k$, Γ_{G_k} is infinite. $\Gamma_{G_{k+1}}$ is infinite for some son G_{k+1} of G_k .

Constructing a pro-p group

 $G \in \mathcal{F}$, $\Gamma_G = \{ \text{descendents of } G \}$

Proposition

Assume that

- ${\small \bigcirc} \ \ \Gamma_{\mathcal F} \ \, is \ \, infinite \ \, and$
- **2** $\Gamma_{\mathcal{F}}$ is a union of a finite number of Γ_{G} ($G \in \mathcal{F}$).

Then there exists an infinite path in Γ .

Proof: There exists G_0 such that Γ_{G_0} is infinite. Γ_{G_1} is infinite for some son G_1 of G_0 . $G_0 \rightarrow G_1 \rightarrow \ldots \rightarrow G_k$, Γ_{G_k} is infinite. $\Gamma_{G_{k+1}}$ is infinite for some son G_{k+1} of G_k .

Constructing a pro-p group

 $G \in \mathcal{F}, \ \Gamma_G = \{ \text{descendents of } G \}$

Proposition

Assume that

 $\bullet \ \Gamma_{\mathcal{F}} \text{ is infinite and}$

2 $\Gamma_{\mathcal{F}}$ is a union of a finite number of Γ_G ($G \in \mathcal{F}$).

Then there exists an infinite path in Γ .

Proof: There exists G_0 such that Γ_{G_0} is infinite.

 Γ_{G_1} is infinite for some son G_1 of G_0 . $G_0 \rightarrow G_1 \rightarrow \ldots \rightarrow G_k$, Γ_{G_k} is infinite. $\Gamma_{G_{k+1}}$ is infinite for some son G_{k+1} of G_k

Constructing a pro-p group

 $G \in \mathcal{F}, \ \Gamma_G = \{ \text{descendents of } G \}$

Proposition

Assume that

 $\bullet \ \Gamma_{\mathcal{F}} \text{ is infinite and}$

2 $\Gamma_{\mathcal{F}}$ is a union of a finite number of Γ_G ($G \in \mathcal{F}$).

Then there exists an infinite path in Γ .

Proof: There exists G_0 such that Γ_{G_0} is infinite. Γ_{G_1} is infinite for some son G_1 of G_0 . $G_0 \to G_1 \to \ldots \to G_k$, Γ_{G_k} is infinite. $\Gamma_{G_{k+1}}$ is infinite for some son G_{k+1} of G_k .

Constructing a pro-p group

 $G \in \mathcal{F}, \ \Gamma_G = \{ \text{descendents of } G \}$

Proposition

Assume that

 $\bullet \ \Gamma_{\mathcal{F}} \text{ is infinite and}$

2 $\Gamma_{\mathcal{F}}$ is a union of a finite number of Γ_G ($G \in \mathcal{F}$).

Then there exists an infinite path in Γ .

Proof: There exists G_0 such that Γ_{G_0} is infinite. Γ_{G_1} is infinite for some son G_1 of G_0 . $G_0 \rightarrow G_1 \rightarrow \ldots \rightarrow G_k$, Γ_{G_k} is infinite. $\Gamma_{G_{k+1}}$ is infinite for some son G_{k+1} of G_k .

Constructing a pro-p group

 $G \in \mathcal{F}, \ \Gamma_G = \{ \text{descendents of } G \}$

Proposition

Assume that

 $\bullet \ \Gamma_{\mathcal{F}} \text{ is infinite and}$

2 $\Gamma_{\mathcal{F}}$ is a union of a finite number of Γ_G ($G \in \mathcal{F}$).

Then there exists an infinite path in Γ .

Proof: There exists G_0 such that Γ_{G_0} is infinite. Γ_{G_1} is infinite for some son G_1 of G_0 . $G_0 \rightarrow G_1 \rightarrow \ldots \rightarrow G_k$, Γ_{G_k} is infinite. $\Gamma_{G_{k+1}}$ is infinite for some son G_{k+1} of G_k .

Constructing a pro-*p* group

$G_0 ightarrow G_1 ightarrow G_2 ightarrow \ldots ightarrow G_k ightarrow \ldots$ (an infinite path)

 $F = \varprojlim_{i \in I} G_i \text{ for } G_0 \leftarrow G_1 \leftarrow G_2 \leftarrow \ldots \leftarrow G_k \leftarrow \ldots (G_i \text{ is a quotient}$ of G_{i+1})

Corollary

Let $\mathcal P$ be a property of finite *p*-groups. Assume that

- **1** There are infinitely many finite *p*-groups satisfying \mathcal{P} .
- 2 There exists a constant k such that if G satisfies \mathcal{P} then $G/\lambda_i(G)$ satisfies \mathcal{P} for every $i \ge k$.
- There exists a constant d such that any group, that satisfies *P*, is d-generated.

Constructing a pro-p group

$$G_0
ightarrow G_1
ightarrow G_2
ightarrow \ldots
ightarrow G_k
ightarrow \ldots$$
 (an infinite path)

 $F = \varprojlim_{i \in I} G_i \text{ for } G_0 \leftarrow G_1 \leftarrow G_2 \leftarrow \ldots \leftarrow G_k \leftarrow \ldots (G_i \text{ is a quotient of } G_{i+1})$

Corollary

Let \mathcal{P} be a property of finite *p*-groups. Assume that

- **()** There are infinitely many finite *p*-groups satisfying \mathcal{P} .
- 2 There exists a constant k such that if G satisfies \mathcal{P} then $G/\lambda_i(G)$ satisfies \mathcal{P} for every $i \ge k$.
- There exists a constant d such that any group, that satisfies *P*, is d-generated.

Constructing a pro-p group

$$G_0
ightarrow G_1
ightarrow G_2
ightarrow \ldots
ightarrow G_k
ightarrow \ldots$$
 (an infinite path)

 $F = \varprojlim_{i \in I} G_i \text{ for } G_0 \leftarrow G_1 \leftarrow G_2 \leftarrow \ldots \leftarrow G_k \leftarrow \ldots (G_i \text{ is a quotient of } G_{i+1})$

Corollary

Let \mathcal{P} be a property of finite *p*-groups. Assume that

- **①** There are infinitely many finite *p*-groups satisfying \mathcal{P} .
- 2 There exists a constant k such that if G satisfies P then G/λ_i(G) satisfies P for every i ≥ k.
- There exists a constant d such that any group, that satisfies *P*, is d-generated.

Constructing a pro-p group

$$G_0
ightarrow G_1
ightarrow G_2
ightarrow \ldots
ightarrow G_k
ightarrow \ldots$$
 (an infinite path)

 $F = \varprojlim_{i \in I} G_i \text{ for } G_0 \leftarrow G_1 \leftarrow G_2 \leftarrow \ldots \leftarrow G_k \leftarrow \ldots (G_i \text{ is a quotient of } G_{i+1})$

Corollary

Let \mathcal{P} be a property of finite *p*-groups. Assume that

- **①** There are infinitely many finite *p*-groups satisfying \mathcal{P} .
- 2 There exists a constant k such that if G satisfies P then G/λ_i(G) satisfies P for every i ≥ k.
- There exists a constant d such that any group, that satisfies *P*, is d-generated.

The **coclass** cc(G) of a finite *p*-group *G* of order p^m and nilpotency class c(G) is the difference cc(G) = m - c(G).

Therem (C. Leedham-Green, A. Shalev + many other mathematicians)

There exists a function f(p, r) such that every finite *p*-group of coclass at most *r* contains a subgroup of class at most 2 (abelian if p = 2) and index at most f(p, r).

The **coclass** cc(G) of a finite *p*-group *G* of order p^m and nilpotency class c(G) is the difference cc(G) = m - c(G).

Therem (C. Leedham-Green, A. Shalev + many other mathematicians)

There exists a function f(p, r) such that every finite *p*-group of coclass at most *r* contains a subgroup of class at most 2 (abelian if p = 2) and index at most f(p, r).

The **coclass** cc(G) of a finite *p*-group *G* of order p^m and nilpotency class c(G) is the difference cc(G) = m - c(G).

Therem (C. Leedham-Green, A. Shalev + many other mathematicians)

There exists a function f(p, r) such that every finite *p*-group of coclass at most *r* contains a subgroup of class at most 2 (abelian if p = 2) and index at most f(p, r).

The **coclass** cc(G) of a finite *p*-group *G* of order p^m and nilpotency class c(G) is the difference cc(G) = m - c(G).

Therem (C. Leedham-Green, A. Shalev + many other mathematicians)

There exists a function f(p, r) such that every finite *p*-group of coclass at most *r* contains a subgroup of class at most 2 (abelian if p = 2) and index at most f(p, r).

Previous applications: almost regular automorphisms of finite *p*-groups

Theorem (A. Jaikin-Zapirain)

There exists a function f(p, m, n) such that every finite *p*-group, admitting an automorphism of order p^n with p^m fixed points, has a subgroup of index f(p, m, n) and derived length at most $2^{m+1} - 2$.

Previous applications: restrictions on the set of character degrees of finite *p*-groups

Theorem (A. Jaikin-Zapirain, A. Moreto)

Let S be a set of powers of p, containing 1. Let

$$p^k = \min\{x \in \mathcal{S} : x \neq 1\} > p.$$

Assume that

$$|\mathcal{S}| \leq \left\{ egin{array}{cc} k+1 & ext{if } p=2 \ k+2 & ext{if } p>2 \end{array}
ight..$$

Then there exists a constant C_S such that if the complex character degrees of a finite *p*-group *G* belong to *S*, then $c(G) \leq C_S$.
When the pro-p methods can be applied?

In the three previous situations the pro-p groups that appear are p-adic analytic.

The Restricted Burnside Problem (solved by E. Zelmanov)

There are only finitely many *d*-generated finite *p*-groups of exponent p^m .

It is equivalent to

There are no infinite finitely generated pro-*p* groups of finite exponent.

When the pro-p methods can be applied?

In the three previous situations the pro-p groups that appear are p-adic analytic.

The Restricted Burnside Problem (solved by E. Zelmanov)

There are only finitely many *d*-generated finite *p*-groups of exponent p^m .

It is equivalent to

There are no infinite finitely generated pro-*p* groups of finite exponent.

When the pro-p methods can be applied?

In the three previous situations the pro-p groups that appear are p-adic analytic.

The Restricted Burnside Problem (solved by E. Zelmanov)

There are only finitely many *d*-generated finite *p*-groups of exponent p^m .

```
It is equivalent to
```

There are no infinite finitely generated pro-*p* groups of finite exponent.

When the pro-p methods can be applied?

In the three previous situations the pro-p groups that appear are p-adic analytic.

The Restricted Burnside Problem (solved by E. Zelmanov)

There are only finitely many *d*-generated finite *p*-groups of exponent p^m .

It is equivalent to

There are no infinite finitely generated pro-p groups of finite exponent.

When the pro-p methods can be applied?

In the three previous situations the pro-p groups that appear are p-adic analytic.

The Restricted Burnside Problem (solved by E. Zelmanov)

There are only finitely many *d*-generated finite *p*-groups of exponent p^m .

It is equivalent to

There are no infinite finitely generated pro-p groups of finite exponent.

p-adic analytic groups

A pro-p-group P is p-adic analytic if one of the following equivalent conditions holds

- P has a structure of a p-adic manifold and the group operation are analytic functions with respect to this structure.
- ② *P* is a closed subgroup of $\operatorname{GL}_n(\mathbb{Z}_p)$ for some *n*.
- P has finite rank (the number of generators of closed subgroups is uniformly bounded).
- P contains an open uniform pro-p subgroup U (U is torsion free, finitely generated and [U, U] ≤ U^{2p}).

dim $P = \dim_{\mathbb{Q}_p} \mathcal{L}(P)$, where $\mathcal{L}(P)$ is the associated Lie algebra

dim $U = \log_{\rho} |U : U^{\rho}|$ for U uniform

p-adic analytic groups

A pro-p-group P is p-adic analytic if one of the following equivalent conditions holds

- P has a structure of a p-adic manifold and the group operation are analytic functions with respect to this structure.
- ② *P* is a closed subgroup of $GL_n(\mathbb{Z}_p)$ for some *n*.
- P has finite rank (the number of generators of closed subgroups is uniformly bounded).
- P contains an open uniform pro-p subgroup U (U is torsion free, finitely generated and [U, U] ≤ U^{2p}).

dim $P = \dim_{\mathbb{Q}_p} \mathcal{L}(P)$, where $\mathcal{L}(P)$ is the associated Lie algebra

dim $U = \log_{\rho} |U : U^{\rho}|$ for U uniform

p-adic analytic groups

A pro-p-group P is p-adic analytic if one of the following equivalent conditions holds

- P has a structure of a p-adic manifold and the group operation are analytic functions with respect to this structure.
- **2** *P* is a closed subgroup of $\operatorname{GL}_n(\mathbb{Z}_p)$ for some *n*.
- P has finite rank (the number of generators of closed subgroups is uniformly bounded).
- I contains an open uniform pro-p subgroup U (U is torsion free, finitely generated and [U, U] ≤ U^{2p}).

dim $P = \dim_{\mathbb{Q}_p} \mathcal{L}(P)$, where $\mathcal{L}(P)$ is the associated Lie algebra

dim $U = \log_{\rho} |U : U^{\rho}|$ for U uniform

p-adic analytic groups

A pro-p-group P is p-adic analytic if one of the following equivalent conditions holds

- P has a structure of a p-adic manifold and the group operation are analytic functions with respect to this structure.
- **2** *P* is a closed subgroup of $\operatorname{GL}_n(\mathbb{Z}_p)$ for some *n*.
- P has finite rank (the number of generators of closed subgroups is uniformly bounded).
 - P contains an open **uniform** pro-*p* subgroup U(U) is torsion free, finitely generated and $[U, U] \leq U^{2p}$.

dim $P = \dim_{\mathbb{Q}_p} \mathcal{L}(P)$, where $\mathcal{L}(P)$ is the associated Lie algebra

p-adic analytic groups

A pro-p-group P is p-adic analytic if one of the following equivalent conditions holds

- P has a structure of a p-adic manifold and the group operation are analytic functions with respect to this structure.
- **2** *P* is a closed subgroup of $\operatorname{GL}_n(\mathbb{Z}_p)$ for some *n*.
- P has finite rank (the number of generators of closed subgroups is uniformly bounded).
- P contains an open uniform pro-p subgroup U (U is torsion free, finitely generated and [U, U] ≤ U^{2p}).

dim $P = \dim_{\mathbb{Q}_p} \mathcal{L}(P)$, where $\mathcal{L}(P)$ is the associated Lie algebra

p-adic analytic groups

A pro-p-group P is p-adic analytic if one of the following equivalent conditions holds

- P has a structure of a p-adic manifold and the group operation are analytic functions with respect to this structure.
- **2** *P* is a closed subgroup of $GL_n(\mathbb{Z}_p)$ for some *n*.
- P has finite rank (the number of generators of closed subgroups is uniformly bounded).
- P contains an open uniform pro-p subgroup U (U is torsion free, finitely generated and [U, U] ≤ U^{2p}).

dim $P = \dim_{\mathbb{Q}_p} \mathcal{L}(P)$, where $\mathcal{L}(P)$ is the associated Lie algebra

p-adic analytic groups

A pro-p-group P is p-adic analytic if one of the following equivalent conditions holds

- P has a structure of a p-adic manifold and the group operation are analytic functions with respect to this structure.
- **2** *P* is a closed subgroup of $\operatorname{GL}_n(\mathbb{Z}_p)$ for some *n*.
- P has finite rank (the number of generators of closed subgroups is uniformly bounded).
- P contains an open uniform pro-p subgroup U (U is torsion free, finitely generated and [U, U] ≤ U^{2p}).

dim $P = \dim_{\mathbb{Q}_p} \mathcal{L}(P)$, where $\mathcal{L}(P)$ is the associated Lie algebra

A conjugacy class of $x \in G$ is called **real** if x is conjugate to its inverse.

The parity of the number of conjugacy classes of a finite group coincides with the parity of the number of its real classes.

The most small 2-groups have an even number conjugacy classes.

Conjecture (J. Sangroniz)

Let *r* be an odd natural number. Then there are only finitely many finite 2-groups with *r* real conjugacy classes.

A conjugacy class of $x \in G$ is called **real** if x is conjugate to its inverse.

The parity of the number of conjugacy classes of a finite group coincides with the parity of the number of its real classes.

The most small 2-groups have an even number conjugacy classes.

Conjecture (J. Sangroniz)

Let *r* be an odd natural number. Then there are only finitely many finite 2-groups with *r* real conjugacy classes.

A conjugacy class of $x \in G$ is called **real** if x is conjugate to its inverse.

The parity of the number of conjugacy classes of a finite group coincides with the parity of the number of its real classes.

The most small 2-groups have an even number conjugacy classes.

Conjecture (J. Sangroniz)

Let *r* be an odd natural number. Then there are only finitely many finite 2-groups with *r* real conjugacy classes.

A conjugacy class of $x \in G$ is called **real** if x is conjugate to its inverse.

The parity of the number of conjugacy classes of a finite group coincides with the parity of the number of its real classes.

The most small 2-groups have an even number conjugacy classes.

Conjecture (J. Sangroniz)

Let r be an odd natural number. Then there are only finitely many finite 2-groups with r real conjugacy classes.

A conjugacy class of $x \in G$ is called **real** if x is conjugate to its inverse.

The parity of the number of conjugacy classes of a finite group coincides with the parity of the number of its real classes.

The most small 2-groups have an even number conjugacy classes.

Conjecture (J. Sangroniz)

Let r be an odd natural number. Then there are only finitely many finite 2-groups with r real conjugacy classes.

There is only 1 finite 2-group with 1 real conjugacy class.

There are no finite 2-groups with 3 real conjugacy classes.

M. Isaacs, G. Navarro and J. Sangroniz: there are exactly 3 finite 2-groups with 5 real conjugacy classes.

J, Sangroniz, J. Tent: a finite 2-group with 7 real classes has order at most 128.

Theorem (A. Jaikin-Zapirain, J. Tent)

There is only 1 finite 2-group with 1 real conjugacy class.

There are no finite 2-groups with 3 real conjugacy classes.

M. Isaacs, G. Navarro and J. Sangroniz: there are exactly 3 finite 2-groups with 5 real conjugacy classes.

J, Sangroniz, J. Tent: a finite 2-group with 7 real classes has order at most 128.

Theorem (A. Jaikin-Zapirain, J. Tent)

There is only 1 finite 2-group with 1 real conjugacy class.

There are no finite 2-groups with 3 real conjugacy classes.

M. Isaacs, G. Navarro and J. Sangroniz: there are exactly 3 finite 2-groups with 5 real conjugacy classes.

J, Sangroniz, J. Tent: a finite 2-group with 7 real classes has order at most 128.

Theorem (A. Jaikin-Zapirain, J. Tent)

There is only 1 finite 2-group with 1 real conjugacy class.

There are no finite 2-groups with 3 real conjugacy classes.

M. Isaacs, G. Navarro and J. Sangroniz: there are exactly 3 finite 2-groups with 5 real conjugacy classes.

J, Sangroniz, J. Tent: a finite 2-group with 7 real classes has order at most 128.

Theorem (A. Jaikin-Zapirain, J. Tent)

There is only 1 finite 2-group with 1 real conjugacy class.

There are no finite 2-groups with 3 real conjugacy classes.

M. Isaacs, G. Navarro and J. Sangroniz: there are exactly 3 finite 2-groups with 5 real conjugacy classes.

J, Sangroniz, J. Tent: a finite 2-group with 7 real classes has order at most 128.

Theorem (A. Jaikin-Zapirain, J. Tent)

A **real irreducible character** is an irreducible complex character that takes only real values.

R. Brauer: the number of real conjugacy classes coincides with the number of real irreducible characters.

Proposition

Let *r* be a natural number. Assume that a finite 2-group *G* has exactly *r* real conjugacy classes.

- There exists a constant k (depending only on r) such that G/\u03c6_k(G) has exactly r real conjugacy classes.
- 3 The number of generators of G is at most $\log_2 r$.

A **real irreducible character** is an irreducible complex character that takes only real values.

R. Brauer: the number of real conjugacy classes coincides with the number of real irreducible characters.

Proposition

Let *r* be a natural number. Assume that a finite 2-group *G* has exactly *r* real conjugacy classes.

- There exists a constant k (depending only on r) such that G/λ_k(G) has exactly r real conjugacy classes.
- ⁽²⁾ The number of generators of G is at most $\log_2 r$.

A **real irreducible character** is an irreducible complex character that takes only real values.

R. Brauer: the number of real conjugacy classes coincides with the number of real irreducible characters.

Proposition

Let r be a natural number. Assume that a finite 2-group G has exactly r real conjugacy classes.

- There exists a constant k (depending only on r) such that G/\u03c6_k(G) has exactly r real conjugacy classes.
- 2 The number of generators of G is at most $\log_2 r$.

2-groups with odd number of conjugacy classes

Corollary

Let r be a natural number. If there are infinitely many finite 2-groups with exactly r real conjugacy classes, then there exists an infinite pro-2 group F with exactly r real irreducible characters.

Our aim is to show that there exists no an infinite pro-2 group F with r real irreducible characters when r < 24 is an odd number.

2-groups with odd number of conjugacy classes

Corollary

Let r be a natural number. If there are infinitely many finite 2-groups with exactly r real conjugacy classes, then there exists an infinite pro-2 group F with exactly r real irreducible characters.

Our aim is to show that there exists no an infinite pro-2 group F with r real irreducible characters when r < 24 is an odd number.

Proposition

- F is 2-adic analytic;
- any element of finite order of F belongs to the finite radical rad_f(F) (the maximal finite normal subgroup of F);
- if r is odd, then F/rad_f(F) has also odd number (≤ r) of real irreducible characters;
- if r is odd, then any just infinite quotient of F has odd number
 (≤ r) of real irreducible characters and it is not solvable.

Proposition

Let r be a natural number and F a pro-2 groups with exactly r real irreducible characters. Then the following holds

F is 2-adic analytic;

- any element of finite order of F belongs to the finite radical rad_f(F) (the maximal finite normal subgroup of F);
- ③ if r is odd, then F/rad_f(F) has also odd number (≤ r) of real irreducible characters;
- if r is odd, then any just infinite quotient of F has odd number
 (≤ r) of real irreducible characters and it is not solvable.

Proposition

- F is 2-adic analytic;
- any element of finite order of F belongs to the finite radical rad_f(F) (the maximal finite normal subgroup of F);
- ③ if r is odd, then F/rad_f(F) has also odd number (≤ r) of real irreducible characters;
- If r is odd, then any just infinite quotient of F has odd number
 (≤ r) of real irreducible characters and it is not solvable.

Proposition

- F is 2-adic analytic;
- any element of finite order of F belongs to the finite radical rad_f(F) (the maximal finite normal subgroup of F);
- if r is odd, then F/rad_f(F) has also odd number (≤ r) of real irreducible characters;
- If r is odd, then any just infinite quotient of F has odd number (≤ r) of real irreducible characters and it is not solvable.

Proposition

- F is 2-adic analytic;
- any element of finite order of F belongs to the finite radical rad_f(F) (the maximal finite normal subgroup of F);
- if r is odd, then F/rad_f(F) has also odd number (≤ r) of real irreducible characters;
- if r is odd, then any just infinite quotient of F has odd number
 (≤ r) of real irreducible characters and it is not solvable.

Corollary

We can assume that F is a torsion free, non-solvable, just infinite 2-adic analytic pro-2 group with r real irreducible characters (r < 24 is an odd number).

A non-solvable just infinite *p*-adic analytic pro-*p* group is isomorphic to an open subgroups of a Sylow pro-*p* subgroup of the automorphism group of a finite dimensional semisimple *p*-adic Lie algebra.

M. Knesser classified the finite dimensional semisimple *p*-adic Lie algebras.

Corollary

We can assume that F is a torsion free, non-solvable, just infinite 2-adic analytic pro-2 group with r real irreducible characters (r < 24 is an odd number).

A non-solvable just infinite p-adic analytic pro-p group is isomorphic to an open subgroups of a Sylow pro-p subgroup of the automorphism group of a finite dimensional semisimple p-adic Lie algebra.

M. Knesser classified the finite dimensional semisimple *p*-adic Lie algebras.

Corollary

We can assume that F is a torsion free, non-solvable, just infinite 2-adic analytic pro-2 group with r real irreducible characters (r < 24 is an odd number).

A non-solvable just infinite p-adic analytic pro-p group is isomorphic to an open subgroups of a Sylow pro-p subgroup of the automorphism group of a finite dimensional semisimple p-adic Lie algebra.

M. Knesser classified the finite dimensional semisimple *p*-adic Lie algebras.

Proposition

Let F be a torsion free subgroup of a pro-2 group Q of index 2. Assume that F has an odd number r of real irreducible characters. Then there exists an element $x \in Q \setminus F$ such that $F' = C_F(x)$ has an odd number of real irreducible characters r' and $r' \leq r$.

Corollary

We can assume that

- I F has r real irreducible characters (r < 24 is an odd number);</p>
- F is just infinite and torsion free;
- F is isomorphic to a Sylow pro-2 subgroup of the automorphism group of a finite dimensional semisimple 2-adic Lie algebra.
Proposition

Let F be a torsion free subgroup of a pro-2 group Q of index 2. Assume that F has an odd number r of real irreducible characters. Then there exists an element $x \in Q \setminus F$ such that $F' = C_F(x)$ has an odd number of real irreducible characters r' and $r' \leq r$.

Corollary

We can assume that

- F has r real irreducible characters (r < 24 is an odd number);
- *P* is just infinite and torsion free;
- F is isomorphic to a Sylow pro-2 subgroup of the automorphism group of a finite dimensional semisimple 2-adic Lie algebra.

Proposition (an application of Knesser's classification)

Let \mathcal{L} be a finite-dimensional semi-simple Lie \mathbb{Q}_2 -algebra. Assume that the Sylow pro-2 subgroups of Aut(\mathcal{L}) are torsion free and just infinite. Then \mathcal{L} is isomorphic to $\mathfrak{sl}_1(D)$ for some finite-dimensional division \mathbb{Q}_2 -algebra D.

Proposition

Let $\mathcal{L} = \mathfrak{sl}_1(D)$ for some finite-dimensional division \mathbb{Q}_2 -algebra D. Then a Sylow pro-2 subgroup of $\operatorname{Aut}(\mathcal{L})$ can not have odd number of real irreducible characters smaller than 24.

Corollary

Let r be an odd natural number less than 24. Then there are only finitely many finite 2-groups with r real conjugacy classes.

Proposition (an application of Knesser's classification)

Let \mathcal{L} be a finite-dimensional semi-simple Lie \mathbb{Q}_2 -algebra. Assume that the Sylow pro-2 subgroups of Aut(\mathcal{L}) are torsion free and just infinite. Then \mathcal{L} is isomorphic to $\mathfrak{sl}_1(D)$ for some finite-dimensional division \mathbb{Q}_2 -algebra D.

Proposition

Let $\mathcal{L} = \mathfrak{sl}_1(D)$ for some finite-dimensional division \mathbb{Q}_2 -algebra D. Then a Sylow pro-2 subgroup of $\operatorname{Aut}(\mathcal{L})$ can not have odd number of real irreducible characters smaller than 24.

Corollary

Let r be an odd natural number less than 24. Then there are only finitely many finite 2-groups with r real conjugacy classes.

Proposition (an application of Knesser's classification)

Let \mathcal{L} be a finite-dimensional semi-simple Lie \mathbb{Q}_2 -algebra. Assume that the Sylow pro-2 subgroups of Aut(\mathcal{L}) are torsion free and just infinite. Then \mathcal{L} is isomorphic to $\mathfrak{sl}_1(D)$ for some finite-dimensional division \mathbb{Q}_2 -algebra D.

Proposition

Let $\mathcal{L} = \mathfrak{sl}_1(D)$ for some finite-dimensional division \mathbb{Q}_2 -algebra D. Then a Sylow pro-2 subgroup of $\operatorname{Aut}(\mathcal{L})$ can not have odd number of real irreducible characters smaller than 24.

Corollary

Let r be an odd natural number less than 24. Then there are only finitely many finite 2-groups with r real conjugacy classes.

Outline

3 Part II: a negative answer

Pro-*p* group as a source of counterexamples

\mathcal{P} is a property of finite *p*-groups

General question

Is there only a finite number of finite *p*-groups satisfying the property \mathcal{P} ?

How to show that the answer is NO?

Our goal is to construct an infinite pro-p group F such that almost all finite quotients of F satisfies the property \mathcal{P}

Pro-*p* group as a source of counterexamples

\mathcal{P} is a property of finite *p*-groups

General question

Is there only a finite number of finite *p*-groups satisfying the property \mathcal{P} ?

How to show that the answer is NO?

Our goal is to construct an infinite pro-p group F such that almost all finite quotients of F satisfies the property \mathcal{P}

Pro-*p* group as a source of counterexamples

\mathcal{P} is a property of finite *p*-groups

General question

Is there only a finite number of finite *p*-groups satisfying the property \mathcal{P} ?

How to show that the answer is NO?

Our goal is to construct an infinite pro-p group F such that almost all finite quotients of F satisfies the property \mathcal{P}

Pro-*p* group as a source of counterexamples

\mathcal{P} is a property of finite *p*-groups

General question

Is there only a finite number of finite *p*-groups satisfying the property \mathcal{P} ?

How to show that the answer is NO?

Our goal is to construct an infinite pro-p group F such that almost all finite quotients of F satisfies the property P

Conjecture (J. Sangroniz)

Let r be an odd natural number. Then there are only finitely many finite 2-groups with r real conjugacy classes.

Theorem (A. Jaikin-Zapirain, J. Tent)

Let D be a \mathbb{Q}_2 -central division algebra of dimension 9 and $\mathcal{L} = \mathfrak{sl}_1(D)$. Then the Sylow pro-2 subgroups of $\operatorname{Aut}_{\mathbb{Q}_2}(\mathcal{L})$ has exactly 25 real irreducible characters. Hence, Conjecture is wrong when r = 25.

Conjecture (J. Sangroniz)

Let r be an odd natural number. Then there are only finitely many finite 2-groups with r real conjugacy classes.

Theorem (A. Jaikin-Zapirain, J. Tent)

Let *D* be a \mathbb{Q}_2 -central division algebra of dimension 9 and $\mathcal{L} = \mathfrak{sl}_1(D)$. Then the Sylow pro-2 subgroups of $\operatorname{Aut}_{\mathbb{Q}_2}(\mathcal{L})$ has exactly 25 real irreducible characters. Hence, Conjecture is wrong when r = 25.

Problem

Is it true that |G| divides |Aut(G)| for every non-abelian finite *p*-group *G*.

E. Schenkman, 1955 Known to be true for many families of *p*-groups

Theorem (J. González-Sánchez, A. Jaikin-Zapirain)

For each prime p there exists an infinite family of finite p-groups $\{U_i\}$ such that

$$|\operatorname{Aut} U_i| \leq O(|U_i|^{\frac{40}{41}}) \ (i \to \infty).$$

Problem

Is it true that |G| divides |Aut(G)| for every non-abelian finite *p*-group *G*.

E. Schenkman, 1955

Known to be true for many families of p-groups

Theorem (J. González-Sánchez, A. Jaikin-Zapirain)

For each prime p there exists an infinite family of finite p-groups $\{U_i\}$ such that

$$|\operatorname{Aut} U_i| \leq O(|U_i|^{\frac{40}{41}}) \ (i \to \infty).$$

Problem

Is it true that |G| divides |Aut(G)| for every non-abelian finite *p*-group *G*.

E. Schenkman, 1955 Known to be true for many families of *p*-groups

Theorem (J. González-Sánchez, A. Jaikin-Zapirain)

For each prime p there exists an infinite family of finite p-groups $\{U_i\}$ such that

$$|\operatorname{Aut} U_i| \leq O(|U_i|^{\frac{40}{41}}) \ (i \to \infty).$$

Problem

Is it true that |G| divides |Aut(G)| for every non-abelian finite *p*-group *G*.

E. Schenkman, 1955

Known to be true for many families of *p*-groups

Theorem (J. González-Sánchez, A. Jaikin-Zapirain)

For each prime p there exists an infinite family of finite p-groups $\{U_i\}$ such that

$$|\operatorname{\mathsf{Aut}} U_i| \leq O(|U_i|^{rac{40}{41}}) \ (i o \infty).$$

An explanation of the construction:

- Our fist aim is to find a pro-p group U such that Aut(U) is "smaller" than U.
- In our construction U is a uniform p-adic analytic pro-p group.
- $\operatorname{Aut}(U)$ is also a *p*-adic analytic profinite group.
- Thus, Aut U is "smaller" than U means dim Aut(U) < dim(U).
- $U = \underline{\lim} U_i \ (U_i = U/U^{p'}) \text{ and } \operatorname{Aut}(U) = \underline{\lim} \operatorname{Aut}(U_i)$
- We may hope that $|\operatorname{Aut}(U_i)|$ is smaller than $|U_i|$ when *i* is large.

An explanation of the construction:

Our fist aim is to find a pro-p group U such that Aut(U) is "smaller" than U.

In our construction U is a uniform p-adic analytic pro-p group.

 $\operatorname{Aut}(U)$ is also a *p*-adic analytic profinite group.

Thus, Aut U is "smaller" than U means dim Aut(U) < dim(U).

 $U = \lim_{i \to \infty} U_i (U_i = U/U^{p'})$ and $\operatorname{Aut}(U) = \lim_{i \to \infty} \operatorname{Aut}(U_i)$

An explanation of the construction:

Our fist aim is to find a pro-p group U such that Aut(U) is "smaller" than U.

In our construction U is a uniform p-adic analytic pro-p group.

 $\operatorname{Aut}(U)$ is also a *p*-adic analytic profinite group.

Thus, Aut U is "smaller" than U means dim Aut(U) < dim(U).

 $U = \lim_{i \to \infty} U_i \ (U_i = U/U^{p'}) \text{ and } \operatorname{Aut}(U) = \lim_{i \to \infty} \operatorname{Aut}(U_i)$

An explanation of the construction:

Our fist aim is to find a pro-p group U such that Aut(U) is "smaller" than U.

In our construction U is a uniform p-adic analytic pro- p group.

Aut(U) is also a *p*-adic analytic profinite group.

Thus, Aut U is "smaller" than U means dim Aut(U) < dim(U).

$$U = \varprojlim U_i \ (U_i = U/U^{p'}) \text{ and } \operatorname{Aut}(U) = \varprojlim \operatorname{Aut}(U_i)$$

An explanation of the construction:

Our fist aim is to find a pro-p group U such that Aut(U) is "smaller" than U.

In our construction U is a uniform p-adic analytic pro- p group.

Aut(U) is also a *p*-adic analytic profinite group.

Thus, Aut U is "smaller" than U means dim Aut(U) < dim(U).

$$U = \lim_{i \to \infty} U_i \ (U_i = U/U^{p'}) \text{ and } \operatorname{Aut}(U) = \lim_{i \to \infty} \operatorname{Aut}(U_i)$$

An explanation of the construction:

Our fist aim is to find a pro-p group U such that Aut(U) is "smaller" than U.

In our construction U is a uniform p-adic analytic pro-p group.

Aut(U) is also a *p*-adic analytic profinite group.

Thus, Aut U is "smaller" than U means dim Aut(U) < dim(U).

$$U = \varprojlim U_i \ (U_i = U/U^{p^i}) \text{ and } \operatorname{Aut}(U) = \varprojlim \operatorname{Aut}(U_i)$$

An explanation of the construction:

Our fist aim is to find a pro-p group U such that Aut(U) is "smaller" than U.

In our construction U is a uniform p-adic analytic pro-p group.

Aut(U) is also a *p*-adic analytic profinite group.

Thus, Aut U is "smaller" than U means dim Aut(U) < dim(U).

$$U = \varprojlim U_i \ (U_i = U/U^{p^i}) \text{ and } \operatorname{Aut}(U) = \varprojlim \operatorname{Aut}(U_i)$$

A construction of U such that Aut(U) is "smaller" than U:

 $\mathcal{L}(\operatorname{Aut}(U)) \cong \operatorname{Der}(\mathcal{L}(U)) \Rightarrow \operatorname{dim} \operatorname{Aut}(U) = \operatorname{dim}_{\mathbb{Q}_p}(\operatorname{Der}(\mathcal{L}(U))).$

E. Lucks (1970), T. Sato (1971): examples of Lie algebras L with dim $\text{Der}(L) < \dim L$.

Sato's example: a Lie Q-algebra L, $\dim_{\mathbb{Q}} L = 41$, $\dim_{\mathbb{Q}} Z(L) = 1$, $\operatorname{Der}(L) = \operatorname{Inn}(L)$.

Let *M* be a Lie Z-algebra such that $L = \mathbb{Q} \otimes_{\mathbb{Z}} M$

 $U = \exp(M_{\rho}) \ (M_{\rho} = 2\rho(\mathbb{Z}_{\rho} \otimes_{\mathbb{Z}} M)$ is a uniform pro- ρ Lie ring)

A construction of U such that Aut(U) is "smaller" than U:

 $\mathcal{L}(\operatorname{Aut}(U)) \cong \operatorname{Der}(\mathcal{L}(U)) \Rightarrow \operatorname{dim} \operatorname{Aut}(U) = \operatorname{dim}_{\mathbb{Q}_p}(\operatorname{Der}(\mathcal{L}(U))).$

E. Lucks (1970), T. Sato (1971): examples of Lie algebras L with dim $Der(L) < \dim L$.

Sato's example: a Lie \mathbb{Q} -algebra L, dim $_{\mathbb{Q}} L = 41$, dim $_{\mathbb{Q}} Z(L) = 1$, Der(L) = Inn(L).

Let M be a Lie \mathbb{Z} -algebra such that $L = \mathbb{Q} \otimes_{\mathbb{Z}} M$

 $U = \exp(M_{\rho}) \ (M_{\rho} = 2\rho(\mathbb{Z}_{\rho} \otimes_{\mathbb{Z}} M)$ is a uniform pro- ρ Lie ring)

A construction of U such that Aut(U) is "smaller" than U:

 $\mathcal{L}(\operatorname{Aut}(U)) \cong \operatorname{Der}(\mathcal{L}(U)) \Rightarrow \dim \operatorname{Aut}(U) = \dim_{\mathbb{Q}_p}(\operatorname{Der}(\mathcal{L}(U)).$

E. Lucks (1970), T. Sato (1971): examples of Lie algebras L with dim $Der(L) < \dim L$.

Sato's example: a Lie \mathbb{Q} -algebra L, dim $_{\mathbb{Q}} L = 41$, dim $_{\mathbb{Q}} Z(L) = 1$, Der(L) = Inn(L).

Let *M* be a Lie \mathbb{Z} -algebra such that $L = \mathbb{Q} \otimes_{\mathbb{Z}} M$

 $U = \exp(M_{\rho}) \ (M_{\rho} = 2\rho(\mathbb{Z}_{\rho} \otimes_{\mathbb{Z}} M)$ is a uniform pro- ρ Lie ring)

A construction of U such that Aut(U) is "smaller" than U:

 $\mathcal{L}(\operatorname{Aut}(U)) \cong \operatorname{Der}(\mathcal{L}(U)) \Rightarrow \operatorname{dim} \operatorname{Aut}(U) = \operatorname{dim}_{\mathbb{Q}_p}(\operatorname{Der}(\mathcal{L}(U)).$

E. Lucks (1970), T. Sato (1971): examples of Lie algebras L with dim $\text{Der}(L) < \dim L$.

Sato's example: a Lie \mathbb{Q} -algebra L, dim $_{\mathbb{Q}} L = 41$, dim $_{\mathbb{Q}} Z(L) = 1$, Der(L) = Inn(L).

Let *M* be a Lie \mathbb{Z} -algebra such that $L = \mathbb{Q} \otimes_{\mathbb{Z}} M$

 $U = \exp(M_p) \ (M_p = 2p(\mathbb{Z}_p \otimes_{\mathbb{Z}} M) \text{ is a uniform pro-} p \text{ Lie ring})$

A construction of U such that Aut(U) is "smaller" than U:

 $\mathcal{L}(\operatorname{Aut}(U)) \cong \operatorname{Der}(\mathcal{L}(U)) \Rightarrow \operatorname{dim} \operatorname{Aut}(U) = \operatorname{dim}_{\mathbb{Q}_p}(\operatorname{Der}(\mathcal{L}(U)).$

E. Lucks (1970), T. Sato (1971): examples of Lie algebras L with dim $\text{Der}(L) < \dim L$.

Sato's example: a Lie \mathbb{Q} -algebra L, dim_{\mathbb{Q}} L = 41, dim_{\mathbb{Q}} Z(L) = 1, Der(L) = Inn(L).

Let *M* be a Lie \mathbb{Z} -algebra such that $L = \mathbb{Q} \otimes_{\mathbb{Z}} M$

 $U = \exp(M_p) (M_p = 2p(\mathbb{Z}_p \otimes_\mathbb{Z} M) \text{ is a uniform pro-} p \text{ Lie ring})$

A construction of U such that Aut(U) is "smaller" than U:

 $\mathcal{L}(\operatorname{Aut}(U)) \cong \operatorname{Der}(\mathcal{L}(U)) \Rightarrow \operatorname{dim} \operatorname{Aut}(U) = \operatorname{dim}_{\mathbb{Q}_p}(\operatorname{Der}(\mathcal{L}(U)).$

E. Lucks (1970), T. Sato (1971): examples of Lie algebras L with dim $\text{Der}(L) < \dim L$.

Sato's example: a Lie \mathbb{Q} -algebra L, dim_{\mathbb{Q}} L = 41, dim_{\mathbb{Q}} Z(L) = 1, Der(L) = Inn(L).

Let M be a Lie \mathbb{Z} -algebra such that $L = \mathbb{Q} \otimes_{\mathbb{Z}} M$

 $U = \exp(M_p)$ $(M_p = 2p(\mathbb{Z}_p \otimes_{\mathbb{Z}} M)$ is a uniform pro-p Lie ring)

A construction of U such that Aut(U) is "smaller" than U:

 $\mathcal{L}(\operatorname{Aut}(U)) \cong \operatorname{Der}(\mathcal{L}(U)) \Rightarrow \dim \operatorname{Aut}(U) = \dim_{\mathbb{Q}_p}(\operatorname{Der}(\mathcal{L}(U)).$

E. Lucks (1970), T. Sato (1971): examples of Lie algebras L with dim $\text{Der}(L) < \dim L$.

Sato's example: a Lie \mathbb{Q} -algebra L, dim_{\mathbb{Q}} L = 41, dim_{\mathbb{Q}} Z(L) = 1, Der(L) = Inn(L).

Let M be a Lie \mathbb{Z} -algebra such that $L = \mathbb{Q} \otimes_{\mathbb{Z}} M$

 $U = \exp(M_p) \ (M_p = 2p(\mathbb{Z}_p \otimes_{\mathbb{Z}} M) \text{ is a uniform pro-} p \text{ Lie ring})$

$|\operatorname{Aut}(U_i)|$ is smaller than $|U_i|$ when *i* is large:

Proposition

Let U be a uniform pro-p group and assume that $\mathcal{L}(U)$ has only inner derivations. Then there exists a constant C such that

 $\operatorname{Aut}(U/U^{p^i}): \operatorname{Inn}(U/U^{p^i})| \leq C.$

In our examples: $|U/U^{p^i}| = p^{41i}, Z(U/U^{p^i})| \ge p^i \Rightarrow |\ln(U/U^{p^i})| \le p^{40i}.$

 $|\operatorname{Aut}(U_i)|$ is smaller than $|U_i|$ when *i* is large:

Proposition

Let U be a uniform pro-p group and assume that $\mathcal{L}(U)$ has only inner derivations. Then there exists a constant C such that

 $|\operatorname{Aut}(U/U^{p^i}):\operatorname{Inn}(U/U^{p^i})| \leq C.$

In our examples: $|U/U^{p^i}| = p^{41i}, Z(U/U^{p^i})| \ge p^i \Rightarrow |\operatorname{Inn}(U/U^{p^i})| \le p^{40i}.$

 $|\operatorname{Aut}(U_i)|$ is smaller than $|U_i|$ when *i* is large:

Proposition

Let U be a uniform pro-p group and assume that $\mathcal{L}(U)$ has only inner derivations. Then there exists a constant C such that

 $|\operatorname{Aut}(U/U^{p^i}):\operatorname{Inn}(U/U^{p^i})| \leq C.$

In our examples: $|U/U^{p^i}| = p^{41i}, \ Z(U/U^{p^i})| \ge p^i \Rightarrow |\ln(U/U^{p^i})| \le p^{40i}.$

 $|\operatorname{Aut}(U_i)|$ is smaller than $|U_i|$ when *i* is large:

Proposition

Let U be a uniform pro-p group and assume that $\mathcal{L}(U)$ has only inner derivations. Then there exists a constant C such that

 $|\operatorname{Aut}(U/U^{p^i}):\operatorname{Inn}(U/U^{p^i})| \leq C.$

In our examples: $|U/U^{p^i}| = p^{41i}, \ Z(U/U^{p^i})| \ge p^i \Rightarrow |\ln(U/U^{p^i})| \le p^{40i}.$

Thanks

THANK YOU FOR YOUR ATTENTION

Andrei Jaikin, UAM & ICMAT Pro-p methods in the theory of finite p-groups