The Grothendieck group as a classification tool for algebras

Roozbeh Hazrat

Western Sydney University AUSTRALIA Aim: R and S are rings.

< ∃ >

Aim: *R* and *S* are rings. Then $R \cong S$ if and only if $K_0(R) \cong K_0(S)$.

< ∃ >

Aim: *R* and *S* are rings. Then $R \cong S$ if and only if $K_0(R) \cong K_0(S)$.

R and S are graded rings.

Aim: *R* and *S* are rings. Then $R \cong S$ if and only if $K_0(R) \cong K_0(S)$.

R and *S* are graded rings. Then $R \cong_{gr} S$ if and only if $K_0^{gr}(R) \cong K_0^{gr}(S)$.

御 と く ヨ と く ヨ と

э

- Some simple relations between matrices
- **@** Grothendieck groups and *K*-theory

-

- Some simple relations between matrices
- **2** Grothendieck groups and *K*-theory
- Leavitt path algebras

< E.

- Some simple relations between matrices
- **2** Grothendieck groups and *K*-theory
- Seavitt path algebras
- Classifications of Leavitt path algebras via K-theory

-

A, B: two square non-negative integer matrices.

A, B: two square non-negative integer matrices.

Definition

 $A \sim_E B$, elementary shift equivalent if

A, B: two square non-negative integer matrices.

Definition

 $A \sim_E B$, elementary shift equivalent if $\exists R, S$: non-negative integer matrices such that

A, B: two square non-negative integer matrices.

Definition

 $A \sim_E B$, elementary shift equivalent if $\exists R, S$: non-negative integer matrices such that

A = RSB = SR.

A, B: two square non-negative integer matrices.

Definition

 $A \sim_E B$, elementary shift equivalent if $\exists R, S$: non-negative integer matrices such that

A = RSB = SR.

Example

$$A = 2, B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

A, B: two square non-negative integer matrices.

Definition

 $A \sim_E B$, elementary shift equivalent if $\exists R, S$: non-negative integer matrices such that

A = RSB = SR.

Example

$$A = 2$$
, $B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. Then $A \sim_E B$ as

A, B: two square non-negative integer matrices.

Definition

 $A \sim_E B$, elementary shift equivalent if $\exists R, S$: non-negative integer matrices such that

A = RSB = SR.

Example

$$A = 2, B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
. Then $A \sim_E B$ as
 $2 = \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
 $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \end{pmatrix}$

R.Hazrat

The Grothendieck group as a classification tool for algebras

A, B: two square non-negative integer matrices.

A, B: two square non-negative integer matrices.

Definition

The equivalence relation generated by \sim_E is called strongly shift equivalent, denoted by \sim_S ,

A, B: two square non-negative integer matrices.

Definition

The equivalence relation generated by \sim_E is called strongly shift equivalent, denoted by \sim_S , i.e., $A \sim_S B$ if

$$A = A_0 \sim_E A_1 \sim_E A_2 \sim_E \cdots \sim_E A_n = B.$$

Let
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 6 \\ 1 & 1 \end{pmatrix}$. Question: $A \sim_S B$?

$$A = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}$$

Let
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 6 \\ 1 & 1 \end{pmatrix}$. Question: $A \sim_S B$?

$$A = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 1 \end{pmatrix}$$

Let
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 6 \\ 1 & 1 \end{pmatrix}$. Question: $A \sim_S B$?

$$A = \begin{pmatrix} 1 & 3\\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1\\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1\\ 1 & 2\\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1\\ 1 & 2\\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1\\ 1 & 0 & 0 \end{pmatrix}$$

Let
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 6 \\ 1 & 1 \end{pmatrix}$. Question: $A \sim_S B$?

$$A = \begin{pmatrix} 1 & 3\\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1\\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1\\ 1 & 2\\ 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 2 & 1\\ 1 & 2\\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1\\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 2\\ 2 & 1 & 1\\ 1 & 0 & 0 \end{pmatrix} = A_1$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Let
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 6 \\ 1 & 1 \end{pmatrix}$. Question: $A \sim_S B$?
$$\begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} \sim_E A_1$$
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} = A_1$$

Let
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 6 \\ 1 & 1 \end{pmatrix}$. Question: $A \sim_S B$?
$$\begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} \sim_E A_1$$
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} = A_1$$
$$A_1 = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Let
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 6 \\ 1 & 1 \end{pmatrix}$. Question: $A \sim_S B$?
$$\begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} \sim_E A_1$$
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 2 & 1 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 2 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = A_1$$
$$A_1 = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Let
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 6 \\ 1 & 1 \end{pmatrix}$. Question: $A \sim_5 B$?

$$\begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} \sim_E A_1$$

$$A = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} = A_1$$

$$A_1 = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

◆ロ〉 ◆聞〉 ◆注〉 ◆注〉 三注:

Let
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 6 \\ 1 & 1 \end{pmatrix}$. Question: $A \sim_S B$?

$$\begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} \sim_E A_1$$

$$A = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} = A_1$$

$$A_1 = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 2 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 2 & 0 \end{pmatrix} = A_2$$

◆□ > ◆母 > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Let
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 6 \\ 1 & 1 \end{pmatrix}$. Question: $A \sim_S B$?

$$\begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} \sim_E A_1 \sim_E A_2$$

$$A = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} = A_1$$

$$A_1 = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 2 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 2 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 2 & 0 \end{pmatrix} = A_2$$

$$A_2 = \begin{pmatrix} 1 & 2 & 2 & 0 \\ 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 2 & 0 \end{pmatrix}$$

◆□> ◆御> ◆注> ◆注>

₹.

Let
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 6 \\ 1 & 1 \end{pmatrix}$. Question: $A \sim_5 B$?

$$\begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} \sim_E A_1 \sim_E A_2$$

$$A = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 \\ 1 & 0 & 0 \end{pmatrix} = A_1$$

$$A_1 = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 2 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 2 & 0 \end{pmatrix} = A_2$$

$$A_2 = \begin{pmatrix} 1 & 2 & 2 & 0 \\ 1 & 2 & 2 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

◆□> ◆御> ◆注> ◆注>

æ.,

$$\begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} \sim_E A_1 \sim_E A_2 \\ \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} \sim_E A_1 \sim_E A_2 \sim_E A_3 \\ \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 2 & 0 & 0 & 1 \end{pmatrix} = A_3$$

R.Hazrat The Grothendieck group as a classification tool for algebras

$$\begin{pmatrix} 1 & 3\\ 2 & 1 \end{pmatrix} \sim_E A_1 \sim_E A_2 \sim_E A_3 \\ \begin{pmatrix} 0 & 1 & 1 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 & 1\\ 0 & 2 & 0 & 1\\ 1 & 0 & 1 & 0\\ 1 & 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 & 1\\ 1 & 0 & 1 & 0\\ 1 & 1 & 0 & 1\\ 2 & 0 & 0 & 1 \end{pmatrix} = A_3$$

$$A_3 = \begin{pmatrix} 1 & 2 & 1 & 1\\ 1 & 0 & 1 & 0\\ 1 & 1 & 0 & 1\\ 2 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 3\\ 2 & 1 \end{pmatrix} \sim_E A_1 \sim_E A_2 \sim_E A_3 \\ \begin{pmatrix} 0 & 1 & 1 & 0\\ 0 & 0 & 1 & 0\\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 & 1\\ 0 & 2 & 0 & 1\\ 1 & 0 & 1 & 0\\ 1 & 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 & 1\\ 1 & 0 & 1 & 0\\ 1 & 1 & 0 & 1\\ 2 & 0 & 0 & 1 \end{pmatrix} = A_3 \\ A_3 = \begin{pmatrix} 1 & 2 & 1 & 1\\ 1 & 0 & 1 & 0\\ 1 & 1 & 0 & 1\\ 2 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 & 0\\ 0 & 0 & 0 & 1\\ 0 & 1 & 0 & 0\\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 & 1\\ 1 & 1 & 0 & 1\\ 1 & 1 & 0 & 1\\ 0 & 1 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 3\\ 2 & 1 \end{pmatrix} \sim_{E} A_{1} \sim_{E} A_{2} \sim_{E} A_{3} \\ \begin{pmatrix} 0 & 1 & 1 & 0\\ 0 & 0 & 1 & 0\\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 & 1\\ 0 & 2 & 0 & 1\\ 1 & 0 & 1 & 0\\ 1 & 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 & 1\\ 1 & 0 & 1 & 0\\ 1 & 1 & 0 & 1\\ 2 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 & 0\\ 0 & 1 & 0 & 0\\ 1 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 & 1\\ 1 & 1 & 0 & 1\\ 1 & 1 & 0 & 1\\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 & 1\\ 1 & 1 & 0 & 1\\ 0 & 1 & 1 & 0\\ 1 & 0 & 1 & 0 \end{pmatrix} \\ \begin{pmatrix} 2 & 0 & 0 & 1\\ 1 & 1 & 0 & 1\\ 0 & 1 & 1 & 0\\ 1 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 & 0\\ 0 & 0 & 0 & 1\\ 0 & 1 & 1 & 0\\ 1 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 & 0\\ 0 & 0 & 0 & 1\\ 0 & 1 & 0 & 0\\ 1 & 0 & 0 & 0 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 3\\ 2 & 1 \end{pmatrix} \sim_{E} A_{1} \sim_{E} A_{2} \sim_{E} A_{3} \sim_{E} A_{4} \\ \begin{pmatrix} 0 & 1 & 1 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 & 1\\ 1 & 2 & 1 & 1\\ 1 & 0 & 1 & 0\\ 1 & 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 & 1\\ 1 & 0 & 1 & 0\\ 1 & 1 & 0 & 1 \end{pmatrix} = A_{3}$$

$$A_{3} = \begin{pmatrix} 1 & 2 & 1 & 1\\ 1 & 0 & 1 & 0\\ 1 & 1 & 0 & 1\\ 2 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 & 0\\ 0 & 1 & 0 & 0\\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 & 1\\ 1 & 1 & 0 & 1\\ 0 & 1 & 1 & 0\\ 1 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 & 1\\ 1 & 1 & 0 & 1\\ 0 & 1 & 0 & 1\\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 & 1\\ 1 & 1 & 0 & 1\\ 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 & 1\\ 1 & 1 & 0 & 1\\ 0 & 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 2 & 0\\ 1 & 1 & 1 & 1\\ 0 & 1 & 0 & 1\\ 0 & 2 & 1 & 0 \end{pmatrix} = A_{4}$$

$$\begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} \sim_{E} A_{1} \sim_{E} A_{2} \sim_{E} A_{3} \sim_{E} A_{4} \sim_{E} A_{5} \\ \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 & 1 \\ 1 & 2 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} = A_{3}$$

$$A_{3} = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 2 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 2 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 2 & 1 & 0 \end{pmatrix} = A_{4}$$

$$A_{4} = \begin{pmatrix} 1 & 2 & 2 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 2 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} = A_{5}$$

$$\begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} \sim_{E} A_{1} \sim_{E} A_{2} \sim_{E} A_{3} \sim_{E} A_{4} \sim_{E} A_{5} \\ \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \end{pmatrix} \\ A_{3} = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 2 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 2 & 1 & 0 \end{pmatrix} = A_{4} \\ A_{4} = \begin{pmatrix} 1 & 2 & 2 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 2 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 0 & 2 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 1 \end{pmatrix} = A_{5} \\ A_{5} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

R.Hazrat The Grothendieck group as a classification tool for algebras

$$\begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} \sim_{E} A_{1} \sim_{E} A_{2} \sim_{E} A_{3} \sim_{E} A_{4} \sim_{E} A_{5} \\ \begin{pmatrix} 0 & 1 & 1 & 1 \\ 3 & 0 & 2 & 2 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} =$$

R.Hazrat The Grothendieck group as a classification tool for algebras

◆□▶ ◆御▶ ◆注▶ ◆注▶ ─注。

$$\begin{pmatrix} 1 & 3\\ 2 & 1 \end{pmatrix} \sim_{E} A_{1} \sim_{E} A_{2} \sim_{E} A_{3} \sim_{E} A_{4} \sim_{E} A_{5} \sim_{E} A_{6}$$
$$\begin{pmatrix} 0 & 1 & 1 & 1\\ 3 & 0 & 2 & 2\\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1\\ 0 & 1 & 0\\ 0 & 0 & 1\\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1\\ 5 & 0 & 5\\ 1 & 0 & 1 \end{pmatrix} = A_{6}$$
$$A_{6} = \begin{pmatrix} 1 & 1 & 1\\ 5 & 0 & 5\\ 1 & 0 & 1 \end{pmatrix}$$

R.Hazrat The Grothendieck group as a classification tool for algebras

$$\begin{pmatrix} 1 & 3\\ 2 & 1 \end{pmatrix} \sim_{E} A_{1} \sim_{E} A_{2} \sim_{E} A_{3} \sim_{E} A_{4} \sim_{E} A_{5} \sim_{E} A_{6}$$

$$\begin{pmatrix} 0 & 1 & 1 & 1\\ 3 & 0 & 2 & 2\\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1\\ 0 & 1 & 0\\ 0 & 0 & 1\\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1\\ 5 & 0 & 5\\ 1 & 0 & 1 \end{pmatrix} = A_{6}$$

$$B_{6} = \begin{pmatrix} 1 & 1 & 1\\ 5 & 0 & 5\\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 0 & 5\\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1\\ 1 & 0 & 1 \end{pmatrix}$$

Δ

$$\begin{pmatrix} 1 & 3\\ 2 & 1 \end{pmatrix} \sim_{E} A_{1} \sim_{E} A_{2} \sim_{E} A_{3} \sim_{E} A_{4} \sim_{E} A_{5} \sim_{E} A_{6} \\ \begin{pmatrix} 0 & 1 & 1 & 1\\ 3 & 0 & 2 & 2\\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1\\ 5 & 0 & 5\\ 1 & 0 & 1 \end{pmatrix} = A_{6}$$

$$6 = \begin{pmatrix} 1 & 1 & 1\\ 5 & 0 & 5\\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 0 & 5\\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1\\ 1 & 0 & 1 \end{pmatrix} \\ \begin{pmatrix} 1 & 1 & 1\\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0\\ 0 & 5\\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 6\\ 1 & 1 \end{pmatrix} = A_{7} = B$$

R.Hazrat The Grothendieck group as a classification tool for algebras

$$\begin{pmatrix} 1 & 3\\ 2 & 1 \end{pmatrix} \sim_{E} A_{1} \sim_{E} A_{2} \sim_{E} A_{3} \sim_{E} A_{4} \sim_{E} A_{5} \sim_{E} A_{6} \sim_{E} \begin{pmatrix} 1 & 6\\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 1 & 1\\ 3 & 0 & 2 & 2\\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1\\ 0 & 1 & 0\\ 0 & 0 & 1\\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1\\ 5 & 0 & 5\\ 1 & 0 & 1 \end{pmatrix} = A_{6}$$

$$A_{6} = \begin{pmatrix} 1 & 1 & 1\\ 5 & 0 & 5\\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 0 & 5\\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1\\ 1 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1\\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0\\ 0 & 5\\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 6\\ 1 & 1 \end{pmatrix} = A_{7} = B$$

R.Hazrat The Grothendieck group as a classification tool for algebras

Question

Let
$$A_k = \begin{pmatrix} 1 & k \\ k-1 & 1 \end{pmatrix}$$
 and $B_k = \begin{pmatrix} 1 & k(k-1) \\ 1 & 1 \end{pmatrix}$.

▶ ▲ 문 ▶ ▲ 문 ▶

Question

Let
$$A_k = \begin{pmatrix} 1 & k \\ k-1 & 1 \end{pmatrix}$$
 and $B_k = \begin{pmatrix} 1 & k(k-1) \\ 1 & 1 \end{pmatrix}$. We showed that $A_3 \sim_S B_3.$

• • = • • = •

Question

Let
$$A_k = \begin{pmatrix} 1 & k \\ k-1 & 1 \end{pmatrix}$$
 and $B_k = \begin{pmatrix} 1 & k(k-1) \\ 1 & 1 \end{pmatrix}$. We showed that
 $A_3 \sim_S B_3$.
Is
 $A_k \sim_S B_k$,
for $k > 4$?

聞 と く き と く き と

Some relations among matrices

R.Hazrat The Grothendieck group as a classification tool for algebras

.⊒ . ►

Definition

 $A \sim B$, *shift equivalent* if

Definition

 $A \sim B$, *shift equivalent* if $\exists R, S$: non-negative integer matrices such that

Definition

 $A \sim B$, *shift equivalent* if $\exists R, S$: non-negative integer matrices such that for i > 0,

$$A^{i} = RS$$

 $B^{i} = SR$
 $AR = RB, SA = BS.$

Some relations among matrices

R.Hazrat The Grothendieck group as a classification tool for algebras

.⊒ . ►

< ∃ >

Theorem (R. Williams)

1 $A \sim_E B$ implies $A \sim B$.

2
$$A \sim_S B$$
 if and only if $A \sim B$.

Theorem (R. Williams)

1 $A \sim_E B$ implies $A \sim B$.

2
$$A \sim_S B$$
 if and only if $A \sim B$.

Theorem (R. Williams)

1 $A \sim_E B$ implies $A \sim B$.

2 $A \sim_S B$ if and only if $A \sim B$.

R. Williams, Erratum, Ann. of Math. 1974.

Theorem (R. Williams)

- **1** $A \sim_E B$ implies $A \sim B$.
- **2** $A \sim_S B$ if and only if $A \sim B$.

R. Williams, Erratum, Ann. of Math. 1974.

Counterexample (Kim, Rousch, William's conjecture is false, Ann. of Math. 1992)

 $A \sim B$ does not imply $A \sim_S B$.

Pictorial approach Graphs

-

э

Pictorial approach Graphs

-

э

Pictorial approach Graphs

•
$$E^0 = \{o, u, v, a\}$$
 the set of vertices,

-

э

Pictorial approach Graphs

- $E^0 = \{o, u, v, a\}$ the set of vertices,
- $E^1 = \{ \alpha, \beta, \gamma, \mu, \nu, \delta \}$ the set of edges

Pictorial approach Graphs

•
$$E^0 = \{o, u, v, a\}$$
 the set of vertices,

•
$$E^1 = \{\alpha, \beta, \gamma, \mu, \nu, \delta\}$$
 the set of edges

•
$$s: E^1
ightarrow E^0$$
, $s(lpha) = o$, $s(\delta) = a$

э

Pictorial approach Graphs

•
$$r: E^1
ightarrow E^0$$
, $r(lpha) = u$, $r(\delta) = v$

э

→ 3 → 4 3

 $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

- ∢ ≣ ▶

-

伺 ト く ヨ ト く ヨ ト

Pictorial approach Change of graph

- Outsplitting of a graph
- Insplitting of a graph

Pictorial approach Change of graph

- Outsplitting of a graph
- Insplitting of a graph

R.Hazrat

The Grothendieck group as a classification tool for algebras

Matrices \iff Graphics

R.Hazrat The Grothendieck group as a classification tool for algebras

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶
$A \sim_S B$ if and only if there is a sequence of insplit and outsplit from A to B.

伺 ト く ヨ ト く ヨ ト

 $A \sim_S B$ if and only if there is a sequence of insplit and outsplit from A to B.

Invariants: Let A be a $n \times n$ non-negative square matrix.

 $A \sim_S B$ if and only if there is a sequence of insplit and outsplit from A to B.

Invariants: Let A be a $n \times n$ non-negative square matrix.

 $A \sim_S B$ if and only if there is a sequence of insplit and outsplit from A to B.

Invariants: Let A be a $n \times n$ non-negative square matrix.

Theorem (W. Krieger, Dimension function and topological Markov chains, Invent. Math, 1980)

 $A \sim B$ if and only if $(\Delta_A, \Delta_A^+, \delta_A) \cong (\Delta_B, \Delta_B^+, \delta_B)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

æ

- $\bullet\,$ Graph characterisation $\sqrt{}\,$
- complete invariant ??

- $\bullet\,$ Graph characterisation $\sqrt{}\,$
- complete invariant ??

- Graph characterisation ??
- complete invariant $D(A) = (\Delta_A, \Delta_A^+, \delta_A) \ \sqrt{}$

- $\bullet\,$ Graph characterisation $\sqrt{}\,$
- complete invariant ??

- Graph characterisation ??
- complete invariant $D(A) = (\Delta_A, \Delta_A^+, \delta_A) \ \sqrt{}$

$$X_A \cong X_B$$

- $\bullet\,$ Graph characterisation $\sqrt{}\,$
- complete invariant ??

- Graph characterisation ??
- complete invariant $D(A) = (\Delta_A, \Delta_A^+, \delta_A) \sqrt{1}$

$$X_A \cong X_B \stackrel{\text{Williams}}{\iff}$$

- $\bullet\,$ Graph characterisation $\sqrt{}\,$
- complete invariant ??

- Graph characterisation ??
- complete invariant $D(A) = (\Delta_A, \Delta_A^+, \delta_A) \ \checkmark$

$$X_A \cong X_B \xrightarrow{\text{Williams}} A \sim_S B$$

- $\bullet\,$ Graph characterisation $\sqrt{}\,$
- complete invariant ??

Shift equivalent \sim :

- Graph characterisation ??
- complete invariant $D(A) = (\Delta_A, \Delta_A^+, \delta_A) \ \sqrt{}$

 $A \sim B$

$$X_A \cong X_B^{\mathsf{Williams}} A \sim_S B$$

- $\bullet\,$ Graph characterisation $\sqrt{}\,$
- complete invariant ??

- Graph characterisation ??
- complete invariant $D(A) = (\Delta_A, \Delta_A^+, \delta_A) \sqrt{2}$

$$X_A \cong X_B \stackrel{\text{Williams}}{\iff} A \sim_S B$$

- $\bullet\,$ Graph characterisation $\sqrt{}\,$
- complete invariant ??

- Graph characterisation ??
- complete invariant $D(A) = (\Delta_A, \Delta_A^+, \delta_A) \sqrt{2}$

$$D(A) \approx D(B) \stackrel{\text{Krieger}}{\iff} A \sim B$$

$$X_A \cong X_B \stackrel{\text{Williams}}{\iff} A \sim_S B$$

- $\bullet\,$ Graph characterisation $\sqrt{}\,$
- complete invariant ??

- Graph characterisation ??
- complete invariant $D(A) = (\Delta_A, \Delta_A^+, \delta_A) \sqrt{2}$

$$D(A) \approx D(B) \stackrel{\text{Krieger}}{\iff} A \sim B$$

$$X_A \cong X_B \stackrel{\text{Williams}}{\iff} A \sim_S B$$

- $\bullet\,$ Graph characterisation $\sqrt{}\,$
- complete invariant ??

- Graph characterisation ??
- complete invariant $D(A) = (\Delta_A, \Delta_A^+, \delta_A) \sqrt{2}$

$$D(A) \approx D(B) \stackrel{\text{Krieger}}{\iff} A \sim B$$

$$X_A \cong X_B \stackrel{\text{Williams}}{\iff} A \sim_S B$$

Let A be a ring with identity.

$$\mathcal{V}(A) = \left\{ [P] \mid P \text{ is f.g projective } A - \mathsf{module} \right\}$$

This is a monoid with direct sum as addition.

Let A be a ring with identity.

$$\mathcal{V}(A) = \Big\{ [P] \mid P \text{ is f.g projective } A - \mathsf{module} \Big\}$$

This is a monoid with direct sum as addition. Define

$$K_0(A) = \mathcal{V}(A)^+.$$

Let A be a ring with identity.

$$\mathcal{V}(A) = \left\{ [P] \mid P \text{ is f.g projective } A - \mathsf{module} \right\}$$

This is a monoid with direct sum as addition. Define

$$K_0(A) = \mathcal{V}(A)^+.$$

 $K_0(A)$ is a pre-ordered abelian group with an order unit [A].

Ultramatricial algebras

Definition (Matricial/Ultramatricial algebras)

Let K be a field. Then $\mathbb{M}_{n_1}(K) \times \cdots \times \mathbb{M}_{n_l}(K)$ is called a matricial algebra.

伺 ト イヨト イヨト

Definition (Matricial/Ultramatricial algebras)

Let K be a field. Then $\mathbb{M}_{n_1}(K) \times \cdots \times \mathbb{M}_{n_l}(K)$ is called a matricial algebra.

Let R_i be K-matricial algebras such that $R_1 \subseteq R_2 \subseteq ...$ Then $\bigcup R_i$ is called an ultramatricial algebra.

Definition (Matricial/Ultramatricial algebras)

Let K be a field. Then $\mathbb{M}_{n_1}(K) \times \cdots \times \mathbb{M}_{n_l}(K)$ is called a matricial algebra.

Let R_i be K-matricial algebras such that $R_1 \subseteq R_2 \subseteq ...$ Then $\bigcup R_i$ is called an ultramatricial algebra.

Example

$$\begin{split} & K \longrightarrow \mathbb{M}_{2}(K) \longrightarrow \mathbb{M}_{4}(K) \longrightarrow \dots \\ & a \longmapsto \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \\ & K \oplus K \longrightarrow \mathbb{M}_{2}(K) \oplus K \longrightarrow \mathbb{M}_{3}(K) \oplus \mathbb{M}_{2}(K) \longrightarrow \dots \\ & (a, b) \longmapsto (\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}, a) \end{split}$$

Theorem (Bratteli, Elliott, Goodearl)

Let R and S be ultramatricial K-algebra. Then $R \cong S$ as K-algebra if and only if

 $(\mathcal{K}_0(R), \mathcal{K}_0(R)_+, [R]) \cong (\mathcal{K}_0(S), \mathcal{K}_0(S)_+, [S]).$

Classification of LPAs via K-groups

.⊒ . ►

Classification of LPAs via K-groups

-

-

Classification of LPAs via K-groups

But

$$\mathbb{M}_3(K) \ncong \mathbb{M}_3(K[x, x^{-1}]).$$

So K_0 doesn't seem to classify all types of LPAs.

G. Abrams, G. Aranda Pino, The Leavitt path algebra of a graph, J. Algebra (2005).

G. Abrams, G. Aranda Pino, The Leavitt path algebra of a graph, J. Algebra (2005).

 $\downarrow^{\delta}_{W}^{\beta}$

-

.⊒ . ►

- ∢ ≣ ▶

ъ

▶ ∢ ≣ ▶

→ < ∃→

-

→ < ∃→

/⊒ > < ∃ >

Definition

For a graph *E*, let $\mathcal{L}(E)$ be the algebra generated by the sets $\{v \mid v \in E^0\}$, $\{\alpha \mid \alpha \in E^1\}$ and $\{\alpha^* \mid \alpha \in E^1\}$ subject to the relations

•
$$uv = \delta_{u,v} u$$
 for every $u, v \in E^0$.

$$s(\alpha)\alpha = \alpha r(\alpha) = \alpha \text{ and } r(\alpha)\alpha^* = \alpha^* s(\alpha) = \alpha^* \text{ for all } \alpha \in E^1.$$

Definition

For a graph *E*, let $\mathcal{L}(E)$ be the algebra generated by the sets $\{v \mid v \in E^0\}$, $\{\alpha \mid \alpha \in E^1\}$ and $\{\alpha^* \mid \alpha \in E^1\}$ subject to the relations

$$uv = \delta_{u,v} u \text{ for every } u, v \in E^0.$$

 $s(\alpha)\alpha = \alpha r(\alpha) = \alpha \text{ and } r(\alpha)\alpha^* = \alpha^* s(\alpha) = \alpha^* \text{ for all } \alpha \in E^1.$

3
$$\alpha^* \alpha' = \delta_{\alpha \alpha'} r(\alpha)$$
, for all $\alpha, \alpha' \in E^1$.

• $\sum_{\{\alpha \in E^1, s(\alpha) = v\}} \alpha \alpha^* = v$ for every $v \in E^0$ for which $s^{-1}(v)$ is non-empty.

Leavitt path algebras: Algebras we can see

R.Hazrat The Grothendieck group as a classification tool for algebras

▶ ∢ ≣ ▶

Leavitt path algebras: Algebras we can see

Theorem (Abrams, Aranda Pino, 2005)

 $\mathcal{L}_{\mathcal{K}}(E)$ is simple if and only if

/₽ ► < ∃ ►

Leavitt path algebras: Algebras we can see

Theorem (Abrams, Aranda Pino, 2005)

 $\mathcal{L}_{\mathcal{K}}(E)$ is simple if and only if

- Every vertex connects to every cycle and to every sink in E, and
- 2 Every cycle in E has an exit.

LPA arises in a variety of different context...

- ∢ ≣ ▶

LPA arises in a variety of different context...

(*) *) *) *)

э

LPA arises in a variety of different context...

Gene Abrams at UWS, Feb 2013.

R.Hazrat

The Grothendieck group as a classification tool for algebras

▶ ★ 臣 ▶

• K-theory does not seem to capture enough information.

3 N

• K-theory does not seem to capture enough information.

• K-theory does not seem to capture enough information.

伺 ト イヨト イヨト

• Taking grading into account...

.⊒ . ►

• Taking grading into account...

♬▶ ◀ ᆿ▶

• Taking grading into account...

伺 ト イヨト イヨト

 $\mathcal{V}^{\mathsf{gr}}(A) = \{ [P] \mid P \text{ is graded finitely generated projective A-module} \}$

 $\mathcal{V}^{\mathsf{gr}}(A) = \{[P] \mid P \text{ is graded finitely generated projective A-module}\}$

has a Γ -module structure: for $\gamma \in \Gamma$ and $[P] \in \mathcal{V}^{\mathsf{gr}}(A)$,

 $\gamma . [P] = [P(\gamma)].$

 $|\mathcal{V}^{\mathsf{gr}}(A) = \{[P] \mid P \text{ is graded finitely generated projective A-module}\}$

has a Γ -module structure: for $\gamma \in \Gamma$ and $[P] \in \mathcal{V}^{\mathsf{gr}}(A)$,

$$\gamma . [P] = [P(\gamma)].$$

The group $\mathcal{V}^{\text{gr}}(A)^+$ is called the graded Grothendieck group and is denoted by $\mathcal{K}_0^{\text{gr}}(A)$, which is a $\mathbb{Z}[\Gamma]$ -module.

Graded versus non-graded K-theory

$$\mathcal{L}(F) \cong \mathbb{M}_3(K)$$

$$\mathcal{L}(E) \cong \mathbb{M}_3(K[x, x^{-1}])$$

Graded versus non-graded K-theory

-

э

Graded versus non-graded K-theory

 $\mathcal{K}^{\mathsf{gr}}_0(\mathcal{L}(F)) \cong \bigoplus_{\mathbb{Z}} \mathbb{Z}, \qquad \qquad \mathcal{K}^{\mathsf{gr}}_0(\mathcal{L}(E)) \cong \mathbb{Z} \bigoplus_{\mathbb{Z}} \mathbb{Z}$

-

э

Polycephaly graphs

Conj: Graded K-theory classifies all LPAs

Theorem

Let E and F be polycephaly graphs. Then $\mathcal{L}(E) \cong_{gr} \mathcal{L}(F)$ if and only if there is a $\mathbb{Z}[x, x^{-1}]$ -module isomorphism

 $(\mathcal{K}_0^{\mathrm{gr}}(\mathcal{L}(E)), [\mathcal{L}(E)]) \cong (\mathcal{K}_0^{\mathrm{gr}}(\mathcal{L}(F)), [\mathcal{L}(F)]).$

伺 ト イヨト イヨト

Conj: Graded K-theory classifies all LPAs

Theorem

Let E and F be polycephaly graphs. Then $\mathcal{L}(E) \cong_{gr} \mathcal{L}(F)$ if and only if there is a $\mathbb{Z}[x, x^{-1}]$ -module isomorphism

 $(\mathcal{K}_0^{\mathrm{gr}}(\mathcal{L}(E)), [\mathcal{L}(E)]) \cong (\mathcal{K}_0^{\mathrm{gr}}(\mathcal{L}(F)), [\mathcal{L}(F)]).$

Conjecture

Let E and F be finite graphs. Then $\mathcal{L}(E) \cong_{gr} \mathcal{L}(F)$ if and only if there is an order $\mathbb{Z}[x, x^{-1}]$ -module isomorphism

 $(\mathcal{K}_0^{\mathrm{gr}}(\mathcal{L}(E)), [\mathcal{L}(E)]) \cong (\mathcal{K}_0^{\mathrm{gr}}(\mathcal{L}(F)), [\mathcal{L}(F)]).$

Conj: Graded K-theory classifies all LPAs

Theorem

Let E and F be polycephaly graphs. Then $\mathcal{L}(E) \cong_{gr} \mathcal{L}(F)$ if and only if there is a $\mathbb{Z}[x, x^{-1}]$ -module isomorphism

 $(\mathcal{K}_0^{\mathrm{gr}}(\mathcal{L}(E)), [\mathcal{L}(E)]) \cong (\mathcal{K}_0^{\mathrm{gr}}(\mathcal{L}(F)), [\mathcal{L}(F)]).$

Conjecture

Let E and F be finite graphs. Then $\mathcal{L}(E) \cong_{gr} \mathcal{L}(F)$ if and only if there is an order $\mathbb{Z}[x, x^{-1}]$ -module isomorphism

 $(\mathcal{K}_0^{\mathrm{gr}}(\mathcal{L}(E)), [\mathcal{L}(E)]) \cong (\mathcal{K}_0^{\mathrm{gr}}(\mathcal{L}(F)), [\mathcal{L}(F)]).$

Theorem (Ara, Pardo, 2014, *J. K-theory*)

A weak version of the conjecture is valid for finite graphs with no sinks and sources.

 $X_E \cong X_F$

 $A_E \approx_{SE} A_F$

- A 3 N

э

$$D(X(E)) \approx D(X(F)) \stackrel{\text{Krieger}}{\longleftrightarrow} A_E \approx_{SE} A_F$$

$$D(X(E)) \approx D(X(F)) \stackrel{\text{Krieger}}{\longleftrightarrow} A_E \approx_{SE} A_F$$

伺 と く ヨ と く ヨ と

э

$$D(X(E)) \approx D(X(F)) \stackrel{\text{Krieger}}{\longleftrightarrow} A_E \approx_{SE} A_F$$

 $X_E \cong X_F \stackrel{\text{Williams}}{\longleftrightarrow} A_E \approx_{SSE} A_F \stackrel{\text{in/out splitting}}{\longrightarrow} \mathcal{L}(E) \approx_{\text{gr}} \mathcal{L}(F)$

$$D(X(E)) \approx D(X(F)) \stackrel{\text{Krieger}}{\longleftrightarrow} A_E \approx_{SE} A_F$$

ヨッ イヨッ イヨッ

 $X_E \cong X_F \stackrel{\text{Williams}}{\longleftrightarrow} A_E \approx_{SSE} A_F \stackrel{\text{in/out splitting}}{\longrightarrow} \mathcal{L}(E) \approx_{\text{gr}} \mathcal{L}(F) \xrightarrow{}$
$$D(X(E)) \approx D(X(F)) \stackrel{\text{Krieger}}{\longleftrightarrow} A_E \approx_{SE} A_F$$

 $X_E \cong X_F \xrightarrow{\text{Williams}} A_E \approx_{SSE} A_F \xrightarrow{\text{in/out splitting}} \mathcal{L}(E) \approx_{\text{gr}} \mathcal{L}(F) \longrightarrow K_0^{\text{gr}}(\mathcal{L}(E)) \cong K_0^{\text{gr}}(\mathcal{L}(F))$

 $QGrP(E) \approx QGrP(F)$

