The Grothendieck group as a classification tool for algebras

Roozbeh Hazrat

Western Sydney University
AUSTRALIA

Aim: R and S are rings.

Aim: R and S are rings.
Then $R \cong S$ if and only if $K_{0}(R) \cong K_{0}(S)$.

Aim: R and S are rings.
Then $R \cong S$ if and only if $K_{0}(R) \cong K_{0}(S)$.
R and S are graded rings.

Aim: R and S are rings.
Then $R \cong S$ if and only if $K_{0}(R) \cong K_{0}(S)$.
R and S are graded rings.
Then $R \cong{ }_{\mathrm{gr}} S$ if and only if $K_{0}^{\mathrm{gr}}(R) \cong K_{0}^{\mathrm{gr}}(S)$.

Contents

(1) Some simple relations between matrices

Contents

(1) Some simple relations between matrices
(2) Grothendieck groups and K-theory

Contents

(1) Some simple relations between matrices
(2) Grothendieck groups and K-theory
(3) Leavitt path algebras

Contents

(1) Some simple relations between matrices
(2) Grothendieck groups and K-theory
(3) Leavitt path algebras
(9) Classifications of Leavitt path algebras via K-theory

1. Some relations among matrices

1. Some relations among matrices

A, B : two square non-negative integer matrices.

1. Some relations among matrices

A, B : two square non-negative integer matrices.

Definition

$A \sim_{E} B$, elementary shift equivalent if

1. Some relations among matrices

A, B : two square non-negative integer matrices.

Definition

$A \sim_{E} B$, elementary shift equivalent if $\exists R, S$: non-negative integer matrices such that

1. Some relations among matrices

A, B : two square non-negative integer matrices.

Definition

$A \sim_{E} B$, elementary shift equivalent if $\exists R, S$: non-negative integer matrices such that

$$
\begin{aligned}
& A=R S \\
& B=S R .
\end{aligned}
$$

1. Some relations among matrices

A, B : two square non-negative integer matrices.

Definition

$A \sim_{E} B$, elementary shift equivalent if $\exists R, S$: non-negative integer matrices such that

$$
\begin{aligned}
& A=R S \\
& B=S R .
\end{aligned}
$$

Example

$$
A=2, B=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

1. Some relations among matrices

A, B : two square non-negative integer matrices.

Definition

$A \sim_{E} B$, elementary shift equivalent if $\exists R, S$: non-negative integer matrices such that

$$
\begin{aligned}
& A=R S \\
& B=S R .
\end{aligned}
$$

Example

$$
A=2, B=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) . \text { Then } A \sim_{E} B \text { as }
$$

1. Some relations among matrices

A, B : two square non-negative integer matrices.

Definition

$A \sim_{E} B$, elementary shift equivalent if $\exists R, S$: non-negative integer matrices such that

$$
\begin{aligned}
& A=R S \\
& B=S R .
\end{aligned}
$$

Example

$$
\begin{aligned}
& A=2, B=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) . \text { Then } A \sim_{E} B \text { as } \\
& 2=\left(\begin{array}{ll}
1 & 1
\end{array}\right)\binom{1}{1} \\
&\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)=\binom{1}{1}\left(\begin{array}{ll}
1 & 1
\end{array}\right)
\end{aligned}
$$

Some relations among matrices

A, B : two square non-negative integer matrices.

Some relations among matrices

A, B : two square non-negative integer matrices.

Definition

The equivalence relation generated by \sim_{E} is called strongly shift equivalent, denoted by \sim_{s},

Some relations among matrices

A, B : two square non-negative integer matrices.

Definition

The equivalence relation generated by \sim_{E} is called strongly shift equivalent, denoted by \sim_{s}, i.e., $A \sim_{s} B$ if

$$
A=A_{0} \sim_{E} A_{1} \sim_{E} A_{2} \sim_{E} \cdots \sim_{E} A_{n}=B .
$$

Example

Let $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 6 \\ 1 & 1\end{array}\right)$. Question: $A \sim_{S} B$?

$$
A=\left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right)
$$

Example

Let $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 6 \\ 1 & 1\end{array}\right)$. Question: $A \sim_{S} B$?

$$
A=\left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
1 & 2 \\
0 & 1
\end{array}\right)
$$

Example

Let $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 6 \\ 1 & 1\end{array}\right)$. Question: $A \sim_{S} B$?

$$
\begin{aligned}
A=\left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right)= & \left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
1 & 2 \\
0 & 1
\end{array}\right) \\
& \left(\begin{array}{ll}
2 & 1 \\
1 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Example

Let $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 6 \\ 1 & 1\end{array}\right)$. Question: $A \sim_{S} B$?

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
1 & 2 \\
0 & 1
\end{array}\right) \\
&\left(\begin{array}{ll}
2 & 1 \\
1 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)=A_{1}
\end{aligned}
$$

Example

Let $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 6 \\ 1 & 1\end{array}\right)$. Question: $A \sim_{S} B$?

$$
\begin{aligned}
\left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right) & \sim_{E} A_{1} \\
A=\left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right) & =\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
1 & 2 \\
0 & 1
\end{array}\right) \\
& \left(\begin{array}{ll}
2 & 1 \\
1 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)=A_{1}
\end{aligned}
$$

Example

Let $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 6 \\ 1 & 1\end{array}\right)$. Question: $A \sim_{S} B$?

$$
\begin{gathered}
\left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right) \sim_{E} A_{1} \\
A=\left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
1 & 2 \\
0 & 1
\end{array}\right) \\
\left(\begin{array}{ll}
2 & 1 \\
1 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)=A_{1} \\
A_{1}=\left(\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Example

Let $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 6 \\ 1 & 1\end{array}\right)$. Question: $A \sim_{S} B$?

$$
\begin{aligned}
\left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right) & \sim_{E} A_{1} \\
A=\left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right) & =\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
1 & 2 \\
0 & 1
\end{array}\right) \\
& \left(\begin{array}{ll}
2 & 1 \\
1 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)=A_{1} \\
A_{1}=\left(\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 1 \\
1 & 0 & 0
\end{array}\right) & =\left(\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 2 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Example

Let $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 6 \\ 1 & 1\end{array}\right)$. Question: $A \sim_{S} B$?

$$
\begin{aligned}
\left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right) & \sim_{E} A_{1} \\
A=\left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right) & =\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
1 & 2 \\
0 & 1
\end{array}\right) \\
& \left(\begin{array}{ll}
2 & 1 \\
1 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)=A_{1} \\
A_{1}=\left(\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 1 \\
1 & 0 & 0
\end{array}\right) & =\left(\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 2 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 0 & 2 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)=
\end{aligned}
$$

Example

Let $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 6 \\ 1 & 1\end{array}\right)$. Question: $A \sim_{S} B$?

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right) \sim_{E} A_{1} \\
& A=\left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
1 & 2 \\
0 & 1
\end{array}\right) \\
& \left(\begin{array}{ll}
2 & 1 \\
1 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)=A_{1} \\
& A_{1}=\left(\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 2 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 0 & 2 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)=\left(\begin{array}{llll}
1 & 2 & 2 & 0 \\
1 & 0 & 2 & 0 \\
0 & 1 & 1 & 1 \\
1 & 1 & 2 & 0
\end{array}\right)=A_{2}
\end{aligned}
$$

Example

Let $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 6 \\ 1 & 1\end{array}\right)$. Question: $A \sim_{S} B$?

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right) \sim_{E} A_{1} \sim_{E} A_{2} \\
& A=\left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
1 & 2 \\
0 & 1
\end{array}\right) \\
& \left(\begin{array}{ll}
2 & 1 \\
1 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)=A_{1} \\
& A_{1}=\left(\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 2 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 0 & 2 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)=\left(\begin{array}{llll}
1 & 2 & 2 & 0 \\
1 & 0 & 2 & 0 \\
0 & 1 & 1 & 1 \\
1 & 1 & 2 & 0
\end{array}\right)=A_{2} \\
& A_{2}=\left(\begin{array}{llll}
1 & 2 & 2 & 0 \\
1 & 0 & 2 & 0 \\
0 & 1 & 1 & 1 \\
1 & 1 & 2 & 0
\end{array}\right)
\end{aligned}
$$

Example

Let $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 6 \\ 1 & 1\end{array}\right)$. Question: $A \sim_{S} B$?

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right) \sim_{E} A_{1} \sim_{E} A_{2} \\
& A=\left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
1 & 2 \\
0 & 1
\end{array}\right) \\
& \left(\begin{array}{ll}
2 & 1 \\
1 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)=A_{1} \\
& A_{1}=\left(\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 2 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 0 & 2 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)=\left(\begin{array}{llll}
1 & 2 & 2 & 0 \\
1 & 0 & 2 & 0 \\
0 & 1 & 1 & 1 \\
1 & 1 & 2 & 0
\end{array}\right)=A_{2} \\
& A_{2}=\left(\begin{array}{llll}
1 & 2 & 2 & 0 \\
1 & 0 & 2 & 0 \\
0 & 1 & 1 & 1 \\
1 & 1 & 2 & 0
\end{array}\right)=\left(\begin{array}{llll}
2 & 0 & 0 & 1 \\
0 & 2 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right)\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
\left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right) & \sim_{E} A_{1} \sim_{E} A_{2} \\
& \left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
2 & 0 & 0 & 1 \\
0 & 2 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
\left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right) & \sim_{E} A_{1} \sim_{E} A_{2} \sim_{E} A_{3} \\
& \left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
2 & 0 & 0 & 1 \\
0 & 2 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & 2 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
2 & 0 & 0 & 1
\end{array}\right)=A_{3}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right) \sim_{E} A_{1} \sim_{E} A_{2} \sim_{E} A_{3} \\
& \left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
2 & 0 & 0 & 1 \\
0 & 2 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & 2 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
2 & 0 & 0 & 1
\end{array}\right)=A_{3} \\
& A_{3}=\left(\begin{array}{llll}
1 & 2 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
2 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Example

$$
\left.\begin{array}{rl}
\left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right) & \sim_{E} A_{1} \sim_{E} A_{2} \sim_{E} A_{3} \\
A_{3}=\left(\begin{array}{llll}
1 & 2 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
2 & 0 & 0 & 1
\end{array}\right) & =\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
2 & 0 & 0 & 1 \\
0 & 2 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & 2 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
2 & 0 & 0 & 1
\end{array}\right)=A_{3} \\
0 & 0 \\
0 & 1 \\
1 & 0
\end{array} 0 \begin{array}{l}
0 \\
1 \\
1
\end{array}\right)\left(\begin{array}{llll}
2 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right) .
$$

Example

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right) \sim_{E} A_{1} \sim_{E} A_{2} \sim_{E} A_{3} \\
& \left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
2 & 0 & 0 & 1 \\
0 & 2 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & 2 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
2 & 0 & 0 & 1
\end{array}\right)=A_{3} \\
& A_{3}=\left(\begin{array}{llll}
1 & 2 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
2 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
2 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right) \\
& \left(\begin{array}{llll}
2 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right) \sim_{E} A_{1} \sim_{E} A_{2} \sim_{E} A_{3} \sim_{E} A_{4} \\
& \left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
2 & 0 & 0 & 1 \\
0 & 2 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & 2 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
2 & 0 & 0 & 1
\end{array}\right)=A_{3} \\
& A_{3}=\left(\begin{array}{llll}
1 & 2 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
2 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
2 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right) \\
& \left(\begin{array}{llll}
2 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{llll}
1 & 2 & 2 & 0 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 2 & 1 & 0
\end{array}\right)=A_{4}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right) \sim_{E} A_{1} \sim_{E} A_{2} \sim_{E} A_{3} \sim_{E} A_{4} \sim_{E} A_{5} \\
& \left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
2 & 0 & 0 & 1 \\
0 & 2 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & 2 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
2 & 0 & 0 & 1
\end{array}\right)=A_{3} \\
& A_{3}=\left(\begin{array}{llll}
1 & 2 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
2 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
2 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right) \\
& \left(\begin{array}{llll}
2 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{llll}
1 & 2 & 2 & 0 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 2 & 1 & 0
\end{array}\right)=A_{4} \\
& A_{4}=\left(\begin{array}{llll}
1 & 2 & 2 & 0 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 2 & 1 & 0
\end{array}\right)=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 2 & 1 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \\
& \left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 2 & 1 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
3 & 0 & 2 & 2 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1
\end{array}\right)=A_{5}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right) \sim_{E} A_{1} \sim_{E} A_{2} \sim_{E} A_{3} \sim_{E} A_{4} \sim_{E} A_{5} \\
& \left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
2 & 0 & 0 & 1 \\
0 & 2 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & 2 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
2 & 0 & 0 & 1
\end{array}\right)=A_{3} \\
& A_{3}=\left(\begin{array}{llll}
1 & 2 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
2 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
2 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right) \\
& \left(\begin{array}{llll}
2 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{llll}
1 & 2 & 2 & 0 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 2 & 1 & 0
\end{array}\right)=A_{4} \\
& A_{4}=\left(\begin{array}{llll}
1 & 2 & 2 & 0 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 2 & 1 & 0
\end{array}\right)=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 2 & 1 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \\
& \left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 2 & 1 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
3 & 0 & 2 & 2 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1
\end{array}\right)=A_{5} \\
& A_{5}=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
3 & 0 & 2 & 2 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
3 & 0 & 2 & 2 \\
1 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Example

$$
\begin{gathered}
\left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right) \sim_{E} A_{1} \sim_{E} A_{2} \sim_{E} A_{3} \sim_{E} A_{4} \sim_{E} A_{5} \\
\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
3 & 0 & 2 & 2 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)=
\end{gathered}
$$

Example

$$
\begin{gathered}
\left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right) \sim_{E} A_{1} \sim_{E} A_{2} \sim_{E} A_{3} \sim_{E} A_{4} \sim_{E} A_{5} \sim_{E} A_{6} \\
\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
3 & 0 & 2 & 2 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 1 \\
5 & 0 & 5 \\
1 & 0 & 1
\end{array}\right)=A_{6} \\
A_{6}=\left(\begin{array}{lll}
1 & 1 & 1 \\
5 & 0 & 5 \\
1 & 0 & 1
\end{array}\right)
\end{gathered}
$$

Example

$$
\begin{aligned}
\left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right) & \sim_{E} A_{1} \sim_{E} A_{2} \sim_{E} A_{3} \sim_{E} A_{4} \sim_{E} A_{5} \sim_{E} A_{6} \\
& \left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
3 & 0 & 2 & 2 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 1 \\
5 & 0 & 5 \\
1 & 0 & 1
\end{array}\right)=A_{6} \\
A_{6}=\left(\begin{array}{lll}
1 & 1 & 1 \\
5 & 0 & 5 \\
1 & 0 & 1
\end{array}\right) & =\left(\begin{array}{ll}
1 & 0 \\
0 & 5 \\
0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
\left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right) & \sim_{E} A_{1} \sim_{E} A_{2} \sim_{E} A_{3} \sim_{E} A_{4} \sim_{E} A_{5} \sim_{E} A_{6} \\
& \left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
3 & 0 & 2 & 2 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 1 \\
5 & 0 & 5 \\
1 & 0 & 1
\end{array}\right)=A_{6} \\
A_{6}=\left(\begin{array}{lll}
1 & 1 & 1 \\
5 & 0 & 5 \\
1 & 0 & 1
\end{array}\right)= & \left(\begin{array}{ll}
1 & 0 \\
0 & 5 \\
0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 5 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 6 \\
1 & 1
\end{array}\right)=A_{7}=B
\end{aligned}
$$

Example

$$
\begin{aligned}
\left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right) & \sim_{E} A_{1} \sim_{E} A_{2} \sim_{E} A_{3} \sim_{E} A_{4} \sim_{E} A_{5} \sim_{E} A_{6} \sim_{E}\left(\begin{array}{ll}
1 & 6 \\
1 & 1
\end{array}\right) \\
& \left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
3 & 0 & 2 & 2 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 1 \\
5 & 0 & 5 \\
1 & 0 & 1
\end{array}\right)=A_{6} \\
A_{6}=\left(\begin{array}{lll}
1 & 1 & 1 \\
5 & 0 & 5 \\
1 & 0 & 1
\end{array}\right)= & \left(\begin{array}{ll}
1 & 0 \\
0 & 5 \\
0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 5 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 6 \\
1 & 1
\end{array}\right)=A_{7}=B
\end{aligned}
$$

Some relations among matrices

Question

Let $A_{k}=\left(\begin{array}{cc}1 & k \\ k-1 & 1\end{array}\right)$ and $B_{k}=\left(\begin{array}{cc}1 & k(k-1) \\ 1 & 1\end{array}\right)$.

Some relations among matrices

Question

Let $A_{k}=\left(\begin{array}{cc}1 & k \\ k-1 & 1\end{array}\right)$ and $B_{k}=\left(\begin{array}{cc}1 & k(k-1) \\ 1 & 1\end{array}\right)$. We showed that
$A_{3} \sim_{s} B_{3}$.

Some relations among matrices

Question
Let $A_{k}=\left(\begin{array}{cc}1 & k \\ k-1 & 1\end{array}\right)$ and $B_{k}=\left(\begin{array}{cc}1 & k(k-1) \\ 1 & 1\end{array}\right)$. We showed that $A_{3} \sim_{S} B_{3}$.

Is

$$
A_{k} \sim_{s} B_{k}
$$

for $k \geq 4$?

Some relations among matrices

Some relations among matrices

A, B : two square non-negative integer matrices.

Some relations among matrices

A, B : two square non-negative integer matrices.

Definition
 $A \sim B$, shift equivalent if

Some relations among matrices

A, B : two square non-negative integer matrices.

Definition

$A \sim B$, shift equivalent if $\exists R, S$: non-negative integer matrices such that

Some relations among matrices

A, B : two square non-negative integer matrices.

Definition

$A \sim B$, shift equivalent if $\exists R, S$: non-negative integer matrices such that for $i>0$,

$$
\begin{gathered}
A^{i}=R S \\
B^{i}=S R \\
A R=R B, \quad S A=B S .
\end{gathered}
$$

Some relations among matrices

Some relations among matrices

R. Williams, Classification of shift of finite type, Ann. of Math. 1973.

Some relations among matrices

R. Williams, Classification of shift of finite type, Ann. of Math. 1973.

Theorem (R. Williams)
(1) $A \sim_{E} B$ implies $A \sim B$.
(2) $A \sim s B$ if and only if $A \sim B$.

Some relations among matrices

R. Williams, Classification of shift of finite type, Ann. of Math. 1973.

Theorem (R. Williams)
(1) $A \sim_{E} B$ implies $A \sim B$.
(2) $A \sim s B$ if and only if $A \sim B$.

Some relations among matrices

R. Williams, Classification of shift of finite type, Ann. of Math. 1973.

Theorem (R. Williams)

(1) $A \sim_{E} B$ implies $A \sim B$.
(2) $A \sim_{s} B$ if and only if $A \sim B$.
R. Williams, Erratum, Ann. of Math. 1974.

Some relations among matrices

R. Williams, Classification of shift of finite type, Ann. of Math. 1973.

Theorem (R. Williams)

(1) $A \sim_{E} B$ implies $A \sim B$.
(2) $A \sim_{s} B$ if and only if $A \sim B$.
R. Williams, Erratum, Ann. of Math. 1974.

Counterexample (Kim, Rousch, william's conjecture is false, Ann. of Math. 1992) $A \sim B$ does not imply $A \sim_{s} B$.

Pictorial approach

Graphs

Pictorial approach

 Graphs

Pictorial approach

Graphs

- $E^{0}=\{o, u, v, a\}$ the set of vertices,

Pictorial approach

Graphs

- $E^{0}=\{o, u, v, a\}$ the set of vertices,
- $E^{1}=\{\alpha, \beta, \gamma, \mu, \nu, \delta\}$ the set of edges

Pictorial approach

Graphs

- $E^{0}=\{o, u, v, a\}$ the set of vertices,
- $E^{1}=\{\alpha, \beta, \gamma, \mu, \nu, \delta\}$ the set of edges
- $s: E^{1} \rightarrow E^{0}, s(\alpha)=o, s(\delta)=a$

Pictorial approach

Graphs

- $E^{0}=\{o, u, v, a\}$ the set of vertices,
- $E^{1}=\{\alpha, \beta, \gamma, \mu, \nu, \delta\}$ the set of edges
- $s: E^{1} \rightarrow E^{0}, s(\alpha)=o, s(\delta)=a$
- $r: E^{1} \rightarrow E^{0}, r(\alpha)=u, r(\delta)=v$

Pictorial approach

A non-negative square matrix \Longleftrightarrow finite directed graph

Pictorial approach

A non-negative square matrix \Longleftrightarrow finite directed graph

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

Pictorial approach

A non-negative square matrix \Longleftrightarrow finite directed graph

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

Pictorial approach

A non-negative square matrix \Longleftrightarrow finite directed graph

$$
\begin{gathered}
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \\
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Pictorial approach

A non-negative square matrix \Longleftrightarrow finite directed graph

$$
\begin{gathered}
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \\
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Pictorial approach

Change of graph

- Outsplitting of a graph
- Insplitting of a graph

Pictorial approach

Change of graph

- Outsplitting of a graph
- Insplitting of a graph

Matrices \Longleftrightarrow Graphics

Matrices \Longleftrightarrow Graphics

Theorem (Williams)
 $A \sim_{S} B$ if and only if there is a sequence of insplit and outsplit from A to B.

Matrices \Longleftrightarrow Graphics

Theorem (Williams)

$A \sim_{S} B$ if and only if there is a sequence of insplit and outsplit from A to B.

Invariants: Let A be a $n \times n$ non-negative square matrix.

$$
\delta_{A}
$$

Matrices \Longleftrightarrow Graphics

Theorem (Williams)

$A \sim_{S} B$ if and only if there is a sequence of insplit and outsplit from A to B.

Invariants: Let A be a $n \times n$ non-negative square matrix.

Matrices \Longleftrightarrow Graphics

Theorem (Williams)

$A \sim_{s} B$ if and only if there is a sequence of insplit and outsplit from A to B.

Invariants: Let A be a $n \times n$ non-negative square matrix.

$$
\begin{aligned}
\Delta_{A} & =\underset{\longrightarrow}{\lim } \mathbb{Z}^{n} \\
\Delta_{A} & =\underset{\delta_{A}}{\lim } \mathbb{Z}^{n}
\end{aligned}
$$

Theorem (W. Krieger, Dimension function and topological Markov chains, Invent. Math, 1980)
$A \sim B$ if and only if $\left(\Delta_{A}, \Delta_{A}^{+}, \delta_{A}\right) \cong\left(\Delta_{B}, \Delta_{B}^{+}, \delta_{B}\right)$.

Summary

Summary

Strongly shift equivalent \sim_{S} :

- Graph characterisation $\sqrt{ }$
- complete invariant ??

Strongly shift equivalent \sim_{S} :

- Graph characterisation $\sqrt{ }$
- complete invariant ??

Shift equivalent \sim :

- Graph characterisation ??
- complete invariant $D(A)=\left(\Delta_{A}, \Delta_{A}^{+}, \delta_{A}\right) \sqrt{ }$

Strongly shift equivalent \sim_{S} :

- Graph characterisation $\sqrt{ }$
- complete invariant ??

Shift equivalent \sim :

- Graph characterisation ??
- complete invariant $D(A)=\left(\Delta_{A}, \Delta_{A}^{+}, \delta_{A}\right) \sqrt{ }$

$$
X_{A} \cong X_{B}
$$

Strongly shift equivalent \sim_{S} :

- Graph characterisation $\sqrt{ }$
- complete invariant ??

Shift equivalent \sim :

- Graph characterisation ??
- complete invariant $D(A)=\left(\Delta_{A}, \Delta_{A}^{+}, \delta_{A}\right) \sqrt{ }$

$$
X_{A} \cong X_{B}^{\text {Williams }}
$$

Strongly shift equivalent \sim_{S} :

- Graph characterisation $\sqrt{ }$
- complete invariant ??

Shift equivalent \sim :

- Graph characterisation ??
- complete invariant $D(A)=\left(\Delta_{A}, \Delta_{A}^{+}, \delta_{A}\right) \sqrt{ }$

$$
X_{A} \cong X_{B}^{\text {Williams }} \leadsto \sim_{S} B
$$

Strongly shift equivalent \sim_{S} :

- Graph characterisation $\sqrt{ }$
- complete invariant ??

Shift equivalent \sim :

- Graph characterisation ??
- complete invariant $D(A)=\left(\Delta_{A}, \Delta_{A}^{+}, \delta_{A}\right) \sqrt{ }$

$$
A \sim B
$$

$$
X_{A} \cong X_{B}^{\text {Williams }} A \sim_{S} B
$$

Strongly shift equivalent \sim_{S} :

- Graph characterisation $\sqrt{ }$
- complete invariant ??

Shift equivalent \sim :

- Graph characterisation ??
- complete invariant $D(A)=\left(\Delta_{A}, \Delta_{A}^{+}, \delta_{A}\right) \sqrt{ }$

Krieger
$\leftrightarrow A \sim B$

$$
X_{A} \cong X_{B}^{\text {Williams }} A \sim{ }_{S} B
$$

Strongly shift equivalent \sim_{S} :

- Graph characterisation $\sqrt{ }$
- complete invariant ??

Shift equivalent \sim :

- Graph characterisation ??
- complete invariant $D(A)=\left(\Delta_{A}, \Delta_{A}^{+}, \delta_{A}\right) \sqrt{ }$

$$
D(A) \approx D(B) \stackrel{\text { Krieger }}{\longleftrightarrow} A \sim B
$$

$$
X_{A} \cong X_{B}^{\text {Williams }} \nVdash A \sim_{S} B
$$

Strongly shift equivalent \sim_{S} :

- Graph characterisation $\sqrt{ }$
- complete invariant ??

Shift equivalent \sim :

- Graph characterisation ??
- complete invariant $D(A)=\left(\Delta_{A}, \Delta_{A}^{+}, \delta_{A}\right) \sqrt{ }$

$$
D(A) \approx D(B) \stackrel{\text { Krieger }}{\longleftrightarrow} A \sim B
$$

$$
X_{A} \cong X_{B}^{\text {Williams }} \nVdash A \sim_{S} B
$$

Strongly shift equivalent \sim_{S} :

- Graph characterisation $\sqrt{ }$
- complete invariant ??

Shift equivalent \sim :

- Graph characterisation ??
- complete invariant $D(A)=\left(\Delta_{A}, \Delta_{A}^{+}, \delta_{A}\right) \sqrt{ }$

$$
D(A) \approx D(B) \stackrel{\text { Krieger }}{\longleftrightarrow} A \sim B
$$

$$
X_{A} \cong X_{B}^{\text {Williams }} \nVdash A \sim_{S} B
$$

Grothendieck group K_{0}

Let A be a ring with identity.

$$
\mathcal{V}(A)=\{[P] \mid P \text { is f.g projective } A-\text { module }\}
$$

This is a monoid with direct sum as addition.

Grothendieck group K_{0}

Let A be a ring with identity.

$$
\mathcal{V}(A)=\{[P] \mid P \text { is f.g projective } A-\text { module }\}
$$

This is a monoid with direct sum as addition.
Define

$$
K_{0}(A)=\mathcal{V}(A)^{+}
$$

Grothendieck group K_{0}

Let A be a ring with identity.

$$
\mathcal{V}(A)=\{[P] \mid P \text { is f.g projective } A-\text { module }\}
$$

This is a monoid with direct sum as addition.
Define

$$
K_{0}(A)=\mathcal{V}(A)^{+}
$$

$K_{0}(A)$ is a pre-ordered abelian group with an order unit $[A]$.

Ultramatricial algebras

Ultramatricial algebras

Definition (Matricial/Ultramatricial algebras)

Let K be a field. Then $\mathbb{M}_{n_{1}}(K) \times \cdots \times \mathbb{M}_{n_{l}}(K)$ is called a matricial algebra.

Ultramatricial algebras

Definition (Matricial/Ultramatricial algebras)

Let K be a field. Then $\mathbb{M}_{n_{1}}(K) \times \cdots \times \mathbb{M}_{n_{l}}(K)$ is called a matricial algebra.
Let R_{i} be K-matricial algebras such that $R_{1} \subseteq R_{2} \subseteq \ldots$. Then $\bigcup R_{i}$ is called an ultramatricial algebra.

Ultramatricial algebras

Definition (Matricial/Ultramatricial algebras)

Let K be a field. Then $\mathbb{M}_{n_{1}}(K) \times \cdots \times \mathbb{M}_{n_{l}}(K)$ is called a matricial algebra.
Let R_{i} be K-matricial algebras such that $R_{1} \subseteq R_{2} \subseteq \ldots$. Then $\bigcup R_{i}$ is called an ultramatricial algebra.

Example

$$
\begin{aligned}
K & \mathbb{M}_{2}(K) \longrightarrow \mathbb{M}_{4}(K) \longrightarrow \ldots \\
& a \longmapsto\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right)
\end{aligned}
$$

$$
K \oplus K \longrightarrow \mathbb{M}_{2}(K) \oplus K \longrightarrow \mathbb{M}_{3}(K) \oplus \mathbb{M}_{2}(K) \longrightarrow \cdots
$$

$$
(a, b) \longmapsto\left(\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right), a\right)
$$

Classification of Ultramatricial algebras

Theorem (Bratteli, Elliott, Goodearl)

Let R and S be ultramatricial K-algebra. Then $R \cong S$ as K-algebra if and only if

$$
\left(K_{0}(R), K_{0}(R)_{+},[R]\right) \cong\left(K_{0}(S), K_{0}(S)_{+},[S]\right) .
$$

Classification of LPAs via K-groups

Classification of LPAs via K-groups

$$
\begin{array}{lll}
F & \longrightarrow \longrightarrow \longrightarrow & \mathcal{L}(F) \cong \mathbb{M}_{3}(K) \\
E & \longrightarrow & \mathcal{L}(E) \cong \mathbb{M}_{3}\left(K\left[x, x^{-1}\right]\right)
\end{array}
$$

Classification of LPAs via K-groups

$$
\begin{array}{lll}
F & \bullet \bullet & \mathcal{L}(F) \cong \mathbb{M}_{3}(K) \\
& \bullet \longrightarrow & \mathcal{L}(E) \cong \mathbb{M}_{3}\left(K\left[x, x^{-1}\right]\right) \\
\left(K_{0}(\mathcal{L}(F)), K_{0}(\mathcal{L}(F))_{+},[\mathcal{L}(F)]\right) \cong(\mathbb{Z}, \mathbb{N}, 3)
\end{array}
$$

Classification of LPAs via K-groups

$$
\begin{array}{rl}
F & \bullet \longrightarrow \\
E & \mathcal{L}(F) \cong \mathbb{M}_{3}(K) \\
\left(K_{0}(\mathcal{L}(F)), K_{0}(\mathcal{L}(F))_{+},[\mathcal{L}(F)]\right) \cong(\mathbb{Z}, \mathbb{N}, 3) \\
\left(K_{0}(\mathcal{L}(E)), K_{0}(\mathcal{L}(E))_{+},[\mathcal{L}(E)]\right) \cong(\mathbb{Z}, \mathbb{N}, 3)
\end{array}
$$

Classification of LPAs via K-groups

$$
\begin{aligned}
& F \bullet \longrightarrow \longrightarrow \bullet \\
& \bullet \longrightarrow \cdot \mathcal{L}(F) \cong \mathbb{M}_{3}(K) \\
&\left(K_{0}(\mathcal{L}(F)), K_{0}(\mathcal{L}(F))_{+},[\mathcal{L}(F)]\right) \cong(\mathbb{Z}, \mathbb{N}, 3) \\
&\left(K_{0}(\mathcal{L}(E)), K_{0}(\mathcal{L}(E))_{+},[\mathcal{L}(E)]\right) \cong(\mathbb{Z}, \mathbb{N}, 3)
\end{aligned}
$$

But

$$
\mathbb{M}_{3}(K) \neq \mathbb{M}_{3}\left(K\left[x, x^{-1}\right]\right) .
$$

So K_{0} doesn't seem to classify all types of LPAs.

Leavitt path algebras

G. Abrams, G. Aranda Pino, The Leavitt path algebra of a graph, J. Algebra (2005).

Example (Double of a graph)

Leavitt path algebras

G. Abrams, G. Aranda Pino, The Leavitt path algebra of a graph, J. Algebra (2005).

Example (Double of a graph)

Leavitt path algebras

Example (Relations in Leavitt path algebra)

Leavitt path algebras

Example (Relations in Leavitt path algebra)

$\alpha \beta \alpha \in \mathcal{L}(E)$,

Leavitt path algebras

Example (Relations in Leavitt path algebra)

E:

$\alpha \beta \alpha \in \mathcal{L}(E)$,
$\alpha^{*} \alpha=$

Leavitt path algebras

Example (Relations in Leavitt path algebra)

E:

$\alpha \beta \alpha \in \mathcal{L}(E)$,
$\alpha^{*} \alpha=v$,

Leavitt path algebras

Example (Relations in Leavitt path algebra)

E:

$$
\begin{aligned}
& \alpha \beta \alpha \in \mathcal{L}(E) \\
& \alpha^{*} \alpha=v \\
& \alpha \alpha^{*}
\end{aligned}
$$

Leavitt path algebras

Example (Relations in Leavitt path algebra)

E:

$$
\begin{aligned}
& \alpha \beta \alpha \in \mathcal{L}(E), \\
& \alpha^{*} \alpha=v, \\
& \alpha \alpha^{*}+\delta \delta^{*}
\end{aligned}
$$

Leavitt path algebras

Example (Relations in Leavitt path algebra)

E:

$$
\begin{aligned}
& \alpha \beta \alpha \in \mathcal{L}(E), \\
& \alpha^{*} \alpha=v, \\
& \alpha \alpha^{*}+\delta \delta^{*}=u .
\end{aligned}
$$

Leavitt path algebras

Definition

For a graph E, let $\mathcal{L}(E)$ be the algebra generated by the sets $\left\{v \mid v \in E^{0}\right\},\left\{\alpha \mid \alpha \in E^{1}\right\}$ and $\left\{\alpha^{*} \mid \alpha \in E^{1}\right\}$ subject to the relations
(1) $u v=\delta_{u, v} u$ for every $u, v \in E^{0}$.
(2) $s(\alpha) \alpha=\alpha r(\alpha)=\alpha$ and $r(\alpha) \alpha^{*}=\alpha^{*} s(\alpha)=\alpha^{*}$ for all $\alpha \in$ E^{1}.

Leavitt path algebras

Definition

For a graph E, let $\mathcal{L}(E)$ be the algebra generated by the sets $\left\{v \mid v \in E^{0}\right\},\left\{\alpha \mid \alpha \in E^{1}\right\}$ and $\left\{\alpha^{*} \mid \alpha \in E^{1}\right\}$ subject to the relations
(1) $u v=\delta_{u, v} u$ for every $u, v \in E^{0}$.
(2) $s(\alpha) \alpha=\alpha r(\alpha)=\alpha$ and $r(\alpha) \alpha^{*}=\alpha^{*} s(\alpha)=\alpha^{*}$ for all $\alpha \in$ E^{1}.
(3) $\alpha^{*} \alpha^{\prime}=\delta_{\alpha \alpha^{\prime}} r(\alpha)$, for all $\alpha, \alpha^{\prime} \in E^{1}$.
(9. $\sum_{\left\{\alpha \in E^{1}, s(\alpha)=v\right\}} \alpha \alpha^{*}=v$ for every $v \in E^{0}$ for which $s^{-1}(v)$ is non-empty.

Leavitt path algebras: Algebras we can see

Leavitt path algebras: Algebras we can see

Theorem (Abrams, Aranda Pino, 2005)
 $\mathcal{L}_{K}(E)$ is simple if and only if

Leavitt path algebras: Algebras we can see

Theorem (Abrams, Aranda Pino, 2005)

$\mathcal{L}_{K}(E)$ is simple if and only if
(1) Every vertex connects to every cycle and to every sink in E, and
(2) Every cycle in E has an exit.

Example

LPA arises in a variety of different context...

LPA arises in a variety of different context...

LPA arises in a variety of different context...

Gene Abrams at UWS, Feb 2013.

- K-theory does not seem to capture enough information.
- K-theory does not seem to capture enough information.

Example (Acyclic graphs)

$$
E: \bullet \longrightarrow \bullet \longrightarrow u
$$

- K-theory does not seem to capture enough information.

Example (Acyclic graphs)

Then

$$
\mathcal{L}(F) \cong \mathcal{L}(E) \cong \mathbb{M}_{3}(K)
$$

- Taking grading into account...
- Taking grading into account...

Example (Acyclic graphs with the grading)

- Taking grading into account...

Example (Acyclic graphs with the grading)

$$
E: \bullet \longrightarrow \bullet \longrightarrow u
$$

Then

$$
\mathcal{L}(F) \cong_{\mathrm{gr}} \mathbb{M}_{3}(K)(0,1,1) \quad \mathcal{L}(E) \cong_{\mathrm{gr}} \mathbb{M}_{3}(K)(0,1,2)
$$

Graded Grothendieck group K_{0}^{gr}

For a Γ-graded ring A with identity and a graded finitely generated projective (right) A-module P, let $[P]$ denote the class of graded A-modules graded isomorphic to P. Then the monoid

Graded Grothendieck group K_{0}^{gr}

For a Γ-graded ring A with identity and a graded finitely generated projective (right) A-module P, let $[P]$ denote the class of graded A-modules graded isomorphic to P. Then the monoid
$\mathcal{V}^{\mathrm{gr}}(A)=\{[P] \mid P$ is graded finitely generated projective A-module $\}$

Graded Grothendieck group K_{0}^{gr}

For a Γ-graded ring A with identity and a graded finitely generated projective (right) A-module P, let $[P]$ denote the class of graded A-modules graded isomorphic to P. Then the monoid
$\mathcal{V}^{\mathrm{gr}}(A)=\{[P] \mid P$ is graded finitely generated projective A-module $\}$
has a Γ-module structure: for $\gamma \in \Gamma$ and $[P] \in \mathcal{V}^{\mathrm{gr}}(A)$,

$$
\gamma \cdot[P]=[P(\gamma)] .
$$

Graded Grothendieck group K_{0}^{gr}

For a Γ-graded ring A with identity and a graded finitely generated projective (right) A-module P, let $[P]$ denote the class of graded A-modules graded isomorphic to P. Then the monoid
$\mathcal{V}^{\mathrm{gr}}(A)=\{[P] \mid P$ is graded finitely generated projective A-module $\}$
has a Γ-module structure: for $\gamma \in \Gamma$ and $[P] \in \mathcal{V}^{\mathrm{gr}}(A)$,

$$
\gamma \cdot[P]=[P(\gamma)] .
$$

The group $\mathcal{V}^{\mathrm{gr}}(A)^{+}$is called the graded Grothendieck group and is denoted by $K_{0}^{\mathrm{gr}}(A)$, which is a $\mathbb{Z}[\Gamma]$-module.

Graded versus non-graded K-theory

Graded versus non-graded K-theory

Graded versus non-graded K-theory

$$
\begin{aligned}
& F \quad \bullet \longrightarrow \bullet \longrightarrow \bullet \quad \mathcal{L}(F) \cong \mathbb{M}_{3}(K) \\
& E \bullet \longrightarrow \mathcal{L}(E) \cong \mathbb{M}_{3}\left(K\left[x, x^{-1}\right]\right) \\
& K_{0}(\mathcal{L}(F)) \cong \mathbb{Z}, \quad K_{0}(\mathcal{L}(E)) \cong \mathbb{Z} \\
& \text { But } \\
& K_{0}^{\mathrm{gr}}(\mathcal{L}(F)) \cong \oplus_{\mathbb{Z}} \mathbb{Z}, \\
& K_{0}^{\mathrm{gr}}(\mathcal{L}(E)) \cong \mathbb{Z} \oplus \mathbb{Z}
\end{aligned}
$$

Polycephaly graphs

Conj: Graded K-theory classifies all LPAs

Theorem

Let E and F be polycephaly graphs. Then $\mathcal{L}(E) \cong_{\mathrm{gr}} \mathcal{L}(F)$ if and only if there is a $\mathbb{Z}\left[x, x^{-1}\right]$-module isomorphism

$$
\left(K_{0}^{\mathrm{gr}}(\mathcal{L}(E)),[\mathcal{L}(E)]\right) \cong\left(K_{0}^{\mathrm{gr}}(\mathcal{L}(F)),[\mathcal{L}(F)]\right) .
$$

Conj: Graded K-theory classifies all LPAs

Theorem

Let E and F be polycephaly graphs. Then $\mathcal{L}(E) \cong{ }_{\mathrm{gr}} \mathcal{L}(F)$ if and only if there is a $\mathbb{Z}\left[x, x^{-1}\right]$-module isomorphism

$$
\left(K_{0}^{\mathrm{gr}}(\mathcal{L}(E)),[\mathcal{L}(E)]\right) \cong\left(K_{0}^{\mathrm{gr}}(\mathcal{L}(F)),[\mathcal{L}(F)]\right) .
$$

Conjecture

Let E and F be finite graphs. Then $\mathcal{L}(E) \cong{ }_{\mathrm{gr}} \mathcal{L}(F)$ if and only if there is an order $\mathbb{Z}\left[x, x^{-1}\right]$-module isomorphism

$$
\left(K_{0}^{\mathrm{gr}}(\mathcal{L}(E)),[\mathcal{L}(E)]\right) \cong\left(K_{0}^{\mathrm{gr}}(\mathcal{L}(F)),[\mathcal{L}(F)]\right) .
$$

Conj: Graded K-theory classifies all LPAs

Theorem

Let E and F be polycephaly graphs. Then $\mathcal{L}(E) \cong_{\mathrm{gr}} \mathcal{L}(F)$ if and only if there is a $\mathbb{Z}\left[x, x^{-1}\right]$-module isomorphism

$$
\left(K_{0}^{\mathrm{gr}}(\mathcal{L}(E)),[\mathcal{L}(E)]\right) \cong\left(K_{0}^{\mathrm{gr}}(\mathcal{L}(F)),[\mathcal{L}(F)]\right)
$$

Conjecture

Let E and F be finite graphs. Then $\mathcal{L}(E) \cong{ }_{g r} \mathcal{L}(F)$ if and only if there is an order $\mathbb{Z}\left[x, x^{-1}\right]$-module isomorphism

$$
\left(K_{0}^{\mathrm{gr}}(\mathcal{L}(E)),[\mathcal{L}(E)]\right) \cong\left(K_{0}^{\mathrm{gr}}(\mathcal{L}(F)),[\mathcal{L}(F)]\right)
$$

Theorem (Ara, Pardo, 2014, J. K-theory)
A weak version of the conjecture is valid for finite graphs with no sinks and sources.
E and F finite graphs, A_{E} and A_{F} the adjacency matrices and X_{E} and X_{F} are shift of finite types.
E and F finite graphs, A_{E} and A_{F} the adjacency matrices and X_{E} and X_{F} are shift of finite types.
$X_{E} \cong X_{F}$
E and F finite graphs, A_{E} and A_{F} the adjacency matrices and X_{E} and X_{F} are shift of finite types.
$x_{E} \cong x_{F} \xrightarrow{\text { Williams }}$
E and F finite graphs, A_{E} and A_{F} the adjacency matrices and X_{E} and X_{F} are shift of finite types.
$X_{E} \cong X_{F} \xrightarrow{\text { Williams }} A_{E} \approx{ }_{S S E} A_{F}$
E and F finite graphs, A_{E} and A_{F} the adjacency matrices and X_{E} and X_{F} are shift of finite types.

$$
A_{E} \approx_{S E} A_{F}
$$

$X_{E} \cong X_{F} \xrightarrow{\text { Williams }} A_{E} \approx{ }_{S S E} A_{F}$
E and F finite graphs, A_{E} and A_{F} the adjacency matrices and X_{E} and X_{F} are shift of finite types.

$$
\stackrel{\text { Krieger }}{\longleftrightarrow} A_{E} \approx_{S E} A_{F}
$$

$X_{E} \cong X_{F} \xrightarrow{\text { Williams }} A_{E} \approx s S E A_{F}$
E and F finite graphs, A_{E} and A_{F} the adjacency matrices and X_{E} and X_{F} are shift of finite types.

$$
D(X(E)) \approx D(X(F)) \stackrel{\text { Krieger }}{\longleftrightarrow} A_{E} \approx_{S E} A_{F}
$$

$X_{E} \cong X_{F} \stackrel{\text { Williams }}{\longleftrightarrow} A_{E} \approx S_{S E} A_{F}$
E and F finite graphs, A_{E} and A_{F} the adjacency matrices and X_{E} and X_{F} are shift of finite types.

$$
D(X(E)) \approx D(X(F)) \stackrel{\text { Krieger }}{\longleftrightarrow} A_{E} \approx_{S E} A_{F}
$$

$$
X_{E} \cong X_{F} \xrightarrow{\text { Williams }} A_{E} \approx \sigma_{S S E} A_{F}^{\text {in/out splitting }}
$$

E and F finite graphs, A_{E} and A_{F} the adjacency matrices and X_{E} and X_{F} are shift of finite types.

$D(X(E)) \approx D(X(F)) \stackrel{\text { Krieger }}{\longleftrightarrow} A_{E} \approx_{S E} A_{F}$
$X_{E} \cong X_{F} \xrightarrow{\text { Williams }} A_{E} \approx S_{S E} A_{F}^{\text {in/out splititing }} \mathcal{L}(E) \approx_{g r} \mathcal{L}(F)$

E and F finite graphs, A_{E} and A_{F} the adjacency matrices and X_{E} and X_{F} are shift of finite types.

$D(X(E)) \approx D(X(F)) \stackrel{\text { Krieger }}{\longleftrightarrow} A_{E} \approx S_{E} A_{F}$
$X_{E} \cong X_{F} \xrightarrow{\text { Williams }} A_{E} \approx S S E A_{F} \xrightarrow{\text { in/out splitting }} \mathcal{L}(E) \approx_{\mathrm{gr}} \mathcal{L}(F) \rightarrow$

E and F finite graphs, A_{E} and A_{F} the adjacency matrices and X_{E} and X_{F} are shift of finite types.

$$
\begin{array}{r}
D(X(E)) \approx D(X(F)) \stackrel{\text { Krieger }}{\longleftrightarrow} A_{E} \approx S_{E} A_{F} \\
x_{E} \cong x_{F} \stackrel{\text { Williams }}{\longleftrightarrow} A_{E} \approx S S E A_{F}^{\text {in/out splitting }} \mathcal{L}(E) \approx \mathrm{gr}_{\mathrm{gr}} \mathcal{L}(F) \longrightarrow K_{0}^{\mathrm{gr}}(\mathcal{L}(E)) \cong K_{0}^{\mathrm{gr}}(\mathcal{L}(F))
\end{array}
$$

E and F finite graphs, A_{E} and A_{F} the adjacency matrices and X_{E} and X_{F} are shift of finite types.

E and F finite graphs, A_{E} and A_{F} the adjacency matrices and X_{E} and X_{F} are shift of finite types.

$$
Q G r P(E) \approx Q G r P(F)
$$

E and F finite graphs, A_{E} and A_{F} the adjacency matrices and X_{E} and X_{F} are shift of finite types.

E and F finite graphs, A_{E} and A_{F} the adjacency matrices and X_{E} and X_{F} are shift of finite types.

E and F finite graphs, A_{E} and A_{F} the adjacency matrices and X_{E} and X_{F} are shift of finite types.

E and F finite graphs, A_{E} and A_{F} the adjacency matrices and X_{E} and X_{F} are shift of finite types.

