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Aim: R and S are rings.

Then R ∼= S if and only if K0(R) ∼= K0(S).

R and S are graded rings.
Then R ∼=gr S if and only if K gr

0 (R) ∼= K gr
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1. Some relations among matrices

A, B: two square non-negative integer matrices.

Definition

A ∼E B, elementary shift equivalent if ∃R, S : non-negative integer
matrices such that

A = RS

B = SR.

Example

A = 2, B =

(
1 1
1 1

)
. Then A ∼E B as

2 =
(
1 1

)(1
1

)
(

1 1
1 1

)
=

(
1
1

)(
1 1

)
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Some relations among matrices

A, B: two square non-negative integer matrices.

Definition

The equivalence relation generated by ∼E is called strongly shift
equivalent, denoted by ∼S , i.e., A ∼S B if

A = A0 ∼E A1 ∼E A2 ∼E · · · ∼E An = B.
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Example

Let A =

(
1 3
2 1

)
and B =

(
1 6
1 1

)
. Question: A ∼S B?

A =

(
1 3
2 1

)

=

(
0 1 1
1 0 0

)2 1
1 2
0 1


2 1

1 2
0 1

(0 1 1
1 0 0

)
=

1 2 2
2 1 1
1 0 0

 = A1

A1 =

1 2 2
2 1 1
1 0 0

 =

1 0 2 0
0 1 1 1
0 1 0 0




1 0 2
1 0 0
0 1 0
1 0 0




1 0 2
1 0 0
0 1 0
1 0 0


1 0 2 0

0 1 1 1
0 1 0 0

 =


1 2 2 0
1 0 2 0
0 1 1 1
1 1 2 0

 = A2

A2 =


1 2 2 0
1 0 2 0
0 1 1 1
1 1 2 0

 =


2 0 0 1
0 2 0 1
1 0 1 0
1 1 0 1




0 1 1 0
0 0 1 0
0 0 0 1
1 0 0 0
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1 0
0 5
0 1

(1 1 1
1 0 1

)
(

1 1 1
1 0 1

)1 0
0 5
0 1

 =

(
1 6
1 1

)
= A7 = B
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Some relations among matrices

Question

Let Ak =

(
1 k

k − 1 1

)
and Bk =

(
1 k(k − 1)
1 1

)
.

We showed that

A3 ∼S B3.

Is
Ak ∼S Bk ,

for k ≥ 4?
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Some relations among matrices

A, B: two square non-negative integer matrices.

Definition

A ∼ B, shift equivalent if ∃R,S : non-negative integer matrices
such that for i > 0,

Ai = RS

B i = SR

AR = RB, SA = BS .
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Some relations among matrices

R. Williams, Classification of shift of finite type, Ann. of Math.
1973.

Theorem (R. Williams)

1 A ∼E B implies A ∼ B.

2 A ∼S B if and only if A ∼ B.

R. Williams, Erratum, Ann. of Math. 1974.

Counterexample (Kim, Rousch, William’s conjecture is false, Ann. of Math. 1992)

A ∼ B does not imply A ∼S B.
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Pictorial approach
Graphs

E : o

α
!!
u

β

bb

ν

""
v

γ

bb

µ

&&
a

δ

ff

E 0 = {o, u, v , a} the set of vertices,

E 1 = {α, β, γ, µ, ν, δ} the set of edges

s : E 1 → E 0, s(α) = o , s(δ) = a

r : E 1 → E 0, r(α) = u , r(δ) = v
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Pictorial approach

A non-negative square matrix ⇐⇒ finite directed graph

(
1 1
1 1

)
•%% ��•XX

yy


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 • "" •
��•

CC

•cc
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Insplitting of a graph
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Matrices ⇐⇒ Graphics

Theorem (Williams)

A ∼S B if and only if there is a sequence of insplit and outsplit
from A to B.

Invariants: Let A be a n × n non-negative square matrix.

Zn A //

A

��

Zn A //

A
��

Zn A //

A

��

· · ·

∆A = lim−→Zn

δA

��
Zn A // ZA A // Zn A // · · ·

∆A = lim−→Zn

Theorem (W. Krieger, Dimension function and topological Markov chains, Invent. Math, 1980)

A ∼ B if and only if (∆A,∆
+
A , δA) ∼= (∆B ,∆

+
B , δB).
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Summary

Strongly shift equivalent ∼S :

Graph characterisation
√

complete invariant ??

Shift equivalent ∼ :

Graph characterisation ??

complete invariant D(A) = (∆A,∆
+
A , δA)

√

D(A)≈D(B) A∼B

XA
∼=XB A∼SB
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Grothendieck group K0

Let A be a ring with identity.

V(A) =
{

[P] | P is f.g projective A−module
}

This is a monoid with direct sum as addition.

Define

K0(A) = V(A)+.

K0(A) is a pre-ordered abelian group with an order unit [A].
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Ultramatricial algebras

Definition (Matricial/Ultramatricial algebras)

Let K be a field. Then Mn1(K )× · · · ×Mnl (K ) is called a
matricial algebra.
Let Ri be K -matricial algebras such that R1 ⊆ R2 ⊆ . . . . Then⋃

Ri is called an ultramatricial algebra.

Example

K −→M2(K ) −→M4(K ) −→ . . .

a 7−→
(
a 0
0 a

)
K ⊕ K −→M2(K )⊕ K −→M3(K )⊕M2(K ) −→ · · ·

(a, b) 7−→ (

(
a 0
0 b

)
, a)
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Classification of Ultramatricial algebras

Theorem (Bratteli, Elliott, Goodearl)

Let R and S be ultramatricial K -algebra. Then R ∼= S as
K -algebra if and only if(

K0(R),K0(R)+, [R]
) ∼= (

K0(S),K0(S)+, [S ]
)
.
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Classification of LPAs via K-groups

F • // • // • L(F ) ∼= M3(K )

E • // • ��•XX L(E ) ∼= M3(K [x , x−1])

(
K0(L(F )),K0(L(F ))+, [L(F )]

)
∼=
(
Z,N, 3

)
(
K0(L(E )),K0(L(E ))+, [L(E )]

)
∼=
(
Z,N, 3

)
But

M3(K ) 6∼= M3(K [x , x−1]).

So K0 doesn’t seem to classify all types of LPAs.
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Leavitt path algebras

G. Abrams, G. Aranda Pino, The Leavitt path algebra of a graph,
J. Algebra (2005).

Example (Double of a graph)

u

δ
��

α
''
v

β

gg

w
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Leavitt path algebras

G. Abrams, G. Aranda Pino, The Leavitt path algebra of a graph,
J. Algebra (2005).

Example (Double of a graph)

E : u

δ

��

α
''

β∗

EEv
β

gg

α∗

��

w

δ∗

OO
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Leavitt path algebras

Example (Relations in Leavitt path algebra)

E : u

δ

��

α
''
v

β

gg

w

αβα ∈ L(E ),
α∗α = v ,
αα∗ + δδ∗ = u.
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Leavitt path algebras

Definition

For a graph E , let L(E ) be the algebra generated by the sets
{v | v ∈ E 0}, {α | α ∈ E 1} and {α∗ | α ∈ E 1} subject to the
relations

1 uv = δu,vu for every u, v ∈ E 0.

2 s(α)α = αr(α) = α and r(α)α∗ = α∗s(α) = α∗ for all α ∈
E 1.

3 α∗α′ = δαα′r(α), for all α, α′ ∈ E 1.

4
∑
{α∈E1,s(α)=v} αα

∗ = v for every v ∈ E 0 for which s−1(v) is
non-empty.
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Leavitt path algebras: Algebras we can see

Theorem (Abrams, Aranda Pino, 2005)

LK (E ) is simple if and only if

1 Every vertex connects to every cycle and to every sink in E,
and

2 Every cycle in E has an exit.

Example

• // • ��•XX • ��•XX
// • • ��•XX

yy
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LPA arises in a variety of different context...

!!!!!!!!!!!!!!!!!!!!!!!
!
!

!
!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Symbolic!
Dynamics!

Leavitt!path!
algebras!

Graph!C*9
algebras!

Non9Commutative!
Geometry!

Representation!
Theory!
!

Gene Abrams at UWS, Feb 2013.
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Towards grading of LPAs

• K -theory does not seem to capture enough information.

Example (Acyclic graphs)

•

��
F : • // u E : • // • // u

Then
L(F ) ∼= L(E ) ∼= M3(K ).
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Towards grading of LPAs

• Taking grading into account...

Example (Acyclic graphs with the grading)

•

��
F : • // u E : • // • // u

Then

L(F ) ∼=gr M3(K )(0, 1, 1) L(E ) ∼=gr M3(K )(0, 1, 2).
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Graded Grothendieck group K gr
0

For a Γ-graded ring A with identity and a graded finitely generated
projective (right) A-module P, let [P] denote the class of graded
A-modules graded isomorphic to P. Then the monoid

Vgr(A) =
{

[P] | P is graded finitely generated projective A-module
}

has a Γ-module structure: for γ ∈ Γ and [P] ∈ Vgr(A),

γ.[P] = [P(γ)].

The group Vgr(A)+ is called the graded Grothendieck group and is
denoted by K gr

0 (A), which is a Z[Γ]-module.
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Graded versus non-graded K -theory

F • // • // • L(F ) ∼= M3(K )

E • // • ��•XX L(E ) ∼= M3(K [x , x−1])

K0(L(F )) ∼= Z, K0(L(E )) ∼= Z

But

K gr
0 (L(F )) ∼=

⊕
Z Z, K gr

0 (L(E )) ∼= Z
⊕

Z
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Polycephaly graphs

•
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• • // • // • �� qqQQ
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Conj: Graded K-theory classifies all LPAs

Theorem

Let E and F be polycephaly graphs. Then L(E ) ∼=gr L(F ) if and
only if there is a Z[x , x−1]-module isomorphism(

K gr
0 (L(E )), [L(E )]

) ∼= (
K gr

0 (L(F )), [L(F )]
)
.

Conjecture

Let E and F be finite graphs. Then L(E ) ∼=gr L(F ) if and only if
there is an order Z[x , x−1]-module isomorphism(

K gr
0 (L(E )), [L(E )]

) ∼= (
K gr

0 (L(F )), [L(F )]
)
.

Theorem (Ara, Pardo, 2014, J. K-theory)

A weak version of the conjecture is valid for finite graphs with no
sinks and sources.
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E and F finite graphs, AE and AF the adjacency matrices and XE

and XF are shift of finite types.
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