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@ Some simple relations between matrices

@ Grothendieck groups and K-theory

© Leavitt path algebras

@ Classifications of Leavitt path algebras via K-theory
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A, B: two square non-negative integer matrices.

Definition
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Some relations among matrices

A, B: two square non-negative integer matrices.

Definition

The equivalence relation generated by ~g is called strongly shift
equivalent, denoted by ~g, i.e., A ~g B if

A=Ay~ AL~ A~ ---~g A, = B.
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Example

Question: A ~g B?
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Some relations among matrices

LetAk:<ki1 /1‘> andBk:G k(kl_l)>.
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Some relations among matrices

_ 1 k (1 k(k—1)
Let A, = (k 1 1) and By = (1 1 > . We showed that
A3z ~s Bs.
Is
Ax ~s By,
for k > 47
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Some relations among matrices

A, B: two square non-negative integer matrices.

Definition
A ~ B, shift equivalent if 3R, S: non-negative integer matrices
such that for j/ > 0,

A = RS
B' = SR
AR = RB, SA=BS.
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1973.
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Some relations among matrices

R. Williams, Classification of shift of finite type, Ann. of Math.
1973.

Theorem (R. Williams)

Q A~f B implies A~ B.
@ A~g B ifandonly if A~ B.
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Some relations among matrices

R. Williams, Classification of shift of finite type, Ann. of Math.
1973.

Theorem (R. Williams)

Q A~f B implies A~ B.
Q A ~s B ifand-enly A ~ B.
R. Williams, Erratum, Ann. of Math. 1974.
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Some relations among matrices

R. Williams, Classification of shift of finite type, Ann. of Math.
1973.

Theorem (R. Williams)

Q A~f B implies A~ B.
Q A ~s B ifand-enly A ~ B.
R. Williams, Erratum, Ann. of Math. 1974.

Counterexamp|e (Klm, ROUSCh, William's conjecture is false, Ann. of Math. 1992)

A ~ B does not imply A ~s B.
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R.Hazrat The Grothendieck group as a classification tool for algebras



Pictorial approach
Graphs

14
« %
VRN
E o u v a
- s ~
B 0 5

o E%={o0,u,v,a} the set of vertices,
o E' = {a,B,v,, 1,6} the set of edges
0es:E' 5 E% s(a)=0,s(6)=a
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Pictorial approach
Graphs

14
o %
VRN
E o u v a
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B v 0

E® = {0, u,v,a} the set of vertices,
E' = {a, 3,7, it,v,0} the set of edges
s:E' - E% s(a)=o0,5(6)=a
r:E' 5 E° r(a)=u, r(6)=v
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Pictorial approach

A non-negative square matrix <= finite directed graph

5 1) LD

= O O O
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o O+~ O
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Pictorial approach
Change of graph

@ Outsplitting of a graph
@ Insplitting of a graph
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Change of graph

@ Outsplitting of a graph
@ Insplitting of a graph

A
St
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Matrices <= Graphics

Theorem (Williams)

A ~g B if and only if there is a sequence of insplit and outsplit
from A to B.
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Matrices <= Graphics

Theorem (Williams)

A ~g B if and only if there is a sequence of insplit and outsplit
from A to B.

Invariants: Let A be a n X n non-negative square matrix.

zn AL gn A gn A

b ]

zn AL gA_ A gn A
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Matrices <= Graphics

Theorem (Williams)

A ~g B if and only if there is a sequence of insplit and outsplit
from A to B.

Invariants: Let A be a n X n non-negative square matrix.

7n A 70 A 70 A_ . AAZIL[I;Zn
A M
v
n_A A_A n_A_ . _ 1 n
Z Z Z AA—ILrp)Z
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Matrices <= Graphics

Theorem (Williams)

A ~g B if and only if there is a sequence of insplit and outsplit
from A to B.

Invariants: Let A be a n X n non-negative square matrix.

7n A 70 A 70 A_ . AAZIL[I;Zn
A M
v
n_A A_A n_A_ . _ 1 n
Z Z Z AA—ILrp)Z

Theorem (W Krieger, Dimension function and topological Markov chains, Invent. Math, 1980)

A ~ B if and only if (Aa, A%, 04) = (A, AL, 05).
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Shift equivalent ~ :
@ Graph characterisation 77
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XAEXB
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Shift equivalent ~ :
@ Graph characterisation 77
o complete invariant D(A) = (Aa, A%, 64) v/

Williams
XAEXB

<>
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@ Graph characterisation 77
o complete invariant D(A) = (Aa, A%, 64) v/
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Krieger
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Williams
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Grothendieck group Kj

Let A be a ring with identity.

V(A) = {[P] | P is f.g projective A — module}

This is a monoid with direct sum as addition.
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Grothendieck group Kj

Let A be a ring with identity.

V(A) = {[P] | P is f.g projective A — module}

This is a monoid with direct sum as addition.
Define
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Grothendieck group Kj

Let A be a ring with identity.

V(A) = {[P] | P is f.g projective A — module}

This is a monoid with direct sum as addition.
Define

Ko(A) = V(A)*.

Ko(A) is a pre-ordered abelian group with an order unit [A].
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Ultramatricial algebras

Definition (Matricial /Ultramatricial algebras)

Let K be a field. Then M, (K) x --- x M, (K) is called a
matricial algebra.
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Ultramatricial algebras

Definition (Matricial /Ultramatricial algebras)

Let K be a field. Then M, (K) x --- x M, (K) is called a
matricial algebra.

Let R; be K-matricial algebras such that Ry C R, C.... Then
|J R; is called an ultramatricial algebra.
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Definition (Matricial /Ultramatricial algebras)

Let K be a field. Then M, (K) x --- x M, (K) is called a
matricial algebra.

Let R; be K-matricial algebras such that Ry C R, C.... Then
|J R; is called an ultramatricial algebra.
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Classification of Ultramatricial algebras

Theorem (Bratteli, Elliott, Goodearl)

Let R and S be ultramatricial K-algebra. Then R = S as
K-algebra if and only if

(Ko(R), Ko(R)+ [R]) = (Ko(S), Ko(S)+ [S])-
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Classification of LPAs via K-groups
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Classification of LPAs via K-groups

F °o—>0— >0 L(F) = M;s(K)

E oe— >0 ° E(E)§M3(K[X7X71])
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Classification of LPAs via K-groups

E o— >0o—>o L(F) = M3(K)
E oe— >0 ° L(E) g1\413(K[X7X71])

(Ko(£(F)). Ko(£(F)) . [£(F)]) = (.1, 3)
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Classification of LPAs via K-groups

E o— >0o—>o L(F) = M3(K)
E .Ho/\o L(E) g1\413(K[X7X71])
AN

(Ko(£(F)). Ko(£(F)) . [£(F)]) = (.1, 3)

(Ko(£(E)), Ko(£(E))+ [£(E)]) = (2,N,3)
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Classification of LPAs via K-groups

E o— >0o—>o L(F) = M3(K)
E .Ho/\o L(E) g1\413(K[X7X71])
AN

(Ko(£(F)). Ko(£(F)) . [£(F)]) = (.1, 3)

(Ko(£(E)), Ko(£(E))+ [£(E)]) = (2,N,3)

But
M3(K) % Ma(K[x,x']).

So Kj doesn’t seem to classify all types of LPAs.
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Leavitt path algebras

G. Abrams, G. Aranda Pino, The Leavitt path algebra of a graph,
J. Algebra (2005).

Example (Double of a graph)
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Leavitt path algebras

G. Abrams, G. Aranda Pino, The Leavitt path algebra of a graph,
J. Algebra (2005).

Example (Double of a graph)
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Leavitt path algebras

Example (Relations in Leavitt path algebra)

E :
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Leavitt path algebras

Example (Relations in Leavitt path algebra)

E :

afa € L(E),
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Leavitt path algebras

Example (Relations in Leavitt path algebra)

E : u_ v
N~— —
o7
w
afa € L(E),
o=
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Leavitt path algebras

Example (Relations in Leavitt path algebra)

E: u_ v
~N~——
7
w
afa € L(E),
afa=v,
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Leavitt path algebras

Example (Relations in Leavitt path algebra)

(07
E : u_ v
~——

o 7

w
afa € L(E),
afa=v,
ao*
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Leavitt path algebras

Example (Relations in Leavitt path algebra)

E : u_ v
N~— —
o7
w
afa € L(E),
afa=v,
aa® + 60*
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Leavitt path algebras

Example (Relations in Leavitt path algebra)

E : u_ v
~——
o 7
w
afa € L(E),
afa=v,
aa® + 60* = u.

R.Hazrat The Grothendieck group as a classification tool for algebras



Leavitt path algebras

Definition

For a graph E, let L(E) be the algebra generated by the sets
{v|veE® {a]acE'} and {a* | a € E'} subject to the
relations

Q@ uv =J,,u for every u,v € EC.

Q s(o)a =ar(a) = a and r(a)a* = a*s(a) = a* for all a €
EL.
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Leavitt path algebras

Definition

For a graph E, let L(E) be the algebra generated by the sets
{v|veE® {a]acE'} and {a* | a € E'} subject to the
relations

Q@ uv =J,,u for every u,v € EC.

Q s(o)a =ar(a) = a and r(a)a* = a*s(a) = a* for all a €
EL.

Q o*d = aur(a), forall a, o € EL.

Q D (ncEl s(a)=v) @ = v for every v € E° for which s71(v) is
non-empty.

R.Hazrat The Grothendieck group as a classification tool for algebras



Leavitt path algebras: Algebras we can see
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Leavitt path algebras: Algebras we can see

Theorem (Abrams, Aranda Pino, 2005)

Lk(E) is simple if and only if
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Leavitt path algebras: Algebras we can see

Theorem (Abrams, Aranda Pino, 2005)
Lk (E) is simple if and only if

@ Every vertex connects to every cycle and to every sink in E,
and

@ Every cycle in E has an exit.

/N
\/3

.H./\. O/\.H. [ ]
N N

A
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LPA arises in a variety of different context...
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LPA arises in a variety of different context...
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LPA arises in a variety of different context...

Some elementary number t

{1.3.6.8,11,1¢,15,
{2.4.5,7,9.10,12,13, 15,17,

Gene Abrams at UWS, Feb 2013.



Towards grading of LPAs

e K-theory does not seem to capture enough information.
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Towards grading of LPAs

e K-theory does not seem to capture enough information.

Example (Acyclic graphs)

|

F:0—> E:-0e—>e0——>y
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Towards grading of LPAs

e K-theory does not seem to capture enough information.

Example (Acyclic graphs)

Then

|

F:o——

L(F) = L(E) = M3(K).

E:-0e—>e0——>y

R.Hazrat
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Towards grading of LPAs

e Taking grading into account...
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Towards grading of LPAs

e Taking grading into account...

Example (Acyclic graphs with the )

|

F:o—— E:0o—>0——> 1y
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Towards grading of LPAs

e Taking grading into account...

Example (Acyclic graphs with the )
[ ]
u

‘C(F) ggl’ M3(K)(O7 1, 1) ‘C(E) ggr M3(K)(0’ 1, 2)'

F:o—— E:0o—>0——> 1y

Then
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Graded Grothendieck group Kogr

For a I-graded ring A with identity and a graded finitely generated
projective (right) A-module P, let [P] denote the class of graded
A-modules graded isomorphic to P. Then the monoid
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Graded Grothendieck group Kogr

For a I-graded ring A with identity and a graded finitely generated
projective (right) A-module P, let [P] denote the class of graded
A-modules graded isomorphic to P. Then the monoid

VE'(A) = {[P] | P is graded finitely generated projective A-module}
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Graded Grothendieck group Kogr

For a I-graded ring A with identity and a graded finitely generated
projective (right) A-module P, let [P] denote the class of graded
A-modules graded isomorphic to P. Then the monoid

VE'(A) = {[P] | P is graded finitely generated projective A-module}

has a -module structure: for v € I' and [P] € V&"(A),

v-[P1=[P(M)] ]
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Graded Grothendieck group Kogr

For a I-graded ring A with identity and a graded finitely generated
projective (right) A-module P, let [P] denote the class of graded
A-modules graded isomorphic to P. Then the monoid

VE'(A) = {[P] | P is graded finitely generated projective A-module}

has a -module structure: for v € I' and [P] € V&"(A),

v-[P1=[P(M)] ]

The group V&"(A)" is called the graded Grothendieck group and is
denoted by K§'(A), which is a Z[l'-module.

R.Hazrat The Grothendieck group as a classification tool for algebras



Graded versus non-graded K-theory

F eo—>0——>eo L(F) = M;s(K)
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Graded versus non-graded K-theory

F o——0——>e0 ﬁ(F)%M3(K)
E .Ho/\o L(E) = M3(K[x,x™1])
ANZ
Ko(L(F)) = Z, Ko(L(E))=Z
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Graded versus non-graded K-theory

F eo—>0——>eo L(F) = M;s(K)
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Polycephaly graphs

The Grothendieck group as a classificati



Conj: K-theory classifies all LPAs

Let E and F be polycephaly graphs. Then L(E) =g L(F) if and
only if there is a Z[x,x~*]-module isomorphism

(K" (£(E)), [£(E)]) = (KG"(£(F)), [£(F)]).-
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Conj: K-theory classifies all LPAs

Let E and F be polycephaly graphs. Then L(E) =g L(F) if and
only if there is a Z[x,x~*]-module isomorphism

(K" (£(E)), [£(E)]) = (KG"(£(F)), [£(F)]).-

Let E and F be finite graphs. Then L(E) =g L(F) if and only if
there is an order Z[x,x~*]-module isomorphism

(K3 (L(E)), [L(E)]) = (K" (L(F)), [L(F)]).
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Conj: K-theory classifies all LPAs

Let E and F be polycephaly graphs. Then L(E) =4 L(F) if and
only if there is a Z[x,x~*]-module isomorphism

(K" (£(E)), [£(E)]) = (KG"(£(F)), [£(F)]).-

Conjecture

Let E and F be finite graphs. Then L(E) =g L(F) if and only if
there is an order Z[x,x~*]-module isomorphism

(K3 (L(E)), [L(E)]) = (K" (L(F)), [L(F)]).

Theorem (Ara, Pardo, 2014, J. K-theory)

A weak version of the conjecture is valid for finite graphs with no
sinks and sources.

N
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E and F finite graphs, Ag and Afr the adjacency matrices and Xg
and Xg are shift of finite types.
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E and F finite graphs, Ag and Afr the adjacency matrices and Xg
and Xg are shift of finite types.
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E and F finite graphs, Ag and Afr the adjacency matrices and Xg
and Xg are shift of finite types.

Williams
Xe2Xp <—
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E and F finite graphs, Ag and Afr the adjacency matrices and Xg
and Xg are shift of finite types.

~ Williams,
Xe=2Xp <= Ap=sseAr
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E and F finite graphs, Ag and Afr the adjacency matrices and Xg
and Xg are shift of finite types.

Ae~seAF

~ Williams,
Xe=2Xp <= Ap=sseAr
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E and F finite graphs, Ag and Afr the adjacency matrices and Xg
and Xg are shift of finite types.

Krieger
< AEQSEAF

Williams
Xe=Xp <= Ap~sseArF
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E and F finite graphs, Ag and Afr the adjacency matrices and Xg
and Xg are shift of finite types.

D(X(E)~D(X(F)) £ AemseAr

Williams
Xe=Xp <= Ap~sseArF
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E and F finite graphs, Ag and Afr the adjacency matrices and Xg
and Xg are shift of finite types.

D(X(E)~D(X(F)) £ AemseAr

Williams in/out splitting
X2 XF <= Apxsse AF —>
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E and F finite graphs, Ag and Afr the adjacency matrices and Xg
and Xg are shift of finite types.

D(X(E)~D(X(F)) £ AemseAr

Willi in/out splittin
Xg=Xp <= ApmisseAr —> L(E)~grL(F)
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E and F finite graphs, Ag and Afr the adjacency matrices and Xg
and Xg are shift of finite types.

D(X(E)~D(X(F)) £ AemseAr

Willi in/out splittin
Xe=Xp < Ap~sseAp —> L(E)~g L(F) —>
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E and F finite graphs, Ag and Afr the adjacency matrices and Xg
and Xg are shift of finite types.

D(X(E)~D(X(F)) £ AemseAr

Williams in/out splittin

Xe2Xp = Apresse AF —> L(E)~g L(F) —= KE (L(E))=KE (L(F))
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E and F finite graphs, Ag and Afr the adjacency matrices and Xg
and Xg are shift of finite types.

D(X(E)~D(X(F)) £ AemseAr

H & Ara, Pardo

Williams in/out splittin

Xe2Xp = Apresse AF —> L(E)~g L(F) —= KE (L(E))=KE (L(F))
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E and F finite graphs, Ag and Afr the adjacency matrices and Xg
and Xg are shift of finite types.

Krieger
D(X(E))=D(X(F)) <= Ae~seAr
H & Ara, Pardo

Williams in/out splittin

Xe2Xp = Apresse AF —> L(E)~g L(F) —= KE (L(E))=KE (L(F))

QGrP(E)~QGrP(F)
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E and F finite graphs, Ag and Afr the adjacency matrices and Xg
and Xg are shift of finite types.

Krieger
D(X(E))=D(X(F)) =— Ae~seAr
H & Ara, Pardo
Williams in/out splittin o o
Xe=Xp < AgresseAr —> L(E)rg£(F) —= KE'(L(E))=KE (L(F))

135 ordered group

QGrP(E)~QGrP(F)
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E and F finite graphs, Ag and Afr the adjacency matrices and Xg
and Xg are shift of finite types.

D(X(E)~D(X(F)) £ AemseAr

H & Ara, Pardo
Williams in/out splittin o o
Xe=Xp <= AgmsseAr —> LIE)xgrL(F) — K (L(E)=KE' (L(F))
|

)6 135 ordered group

QGrP(E)~QGrP(F)
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E and F finite graphs, Ag and Afr the adjacency matrices and Xg
and Xg are shift of finite types.

D(X(E)~D(X(F)) £ AemseAr

H & Ara, Pardo

Williams in/out splittin o Y
Xe=Xp <= AgmsseAr —> LIE)xgrL(F) — K (L(E)=KE' (L(F))
\ |
X as ordered group
v
L(E)=gr L(F) QGrP(E)~QGrP(F)
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E and F finite graphs, Ag and Afr the adjacency matrices and Xg
and Xg are shift of finite types.

D(X(E)~D(X(F)) £ AemseAr

H & Ara, Pardo

Williams in/out splittin o Y
Xe=Xp == AgrsseAr — L(E)~yrL(F) — K§'(L(E)=K (£(F))
)‘( 7 135 ordered group
v
L(E)=gr L(F) QGrP(E)~QGrP(F)
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