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Preliminaries

Let

1 = Z0(G) ≤ Z1(G) = Z (G) ≤ Z2(G) ≤ · · · ≤ Zα(G) ≤ . . .Zγ(G)

be the upper central series of G.

The last term Zγ(G) of this upper central series is denoted by
Z∞(G), the upper hypercentre of G.
Let

G = γ1(G) ≥ γ2(G) = G′ ≥ · · · ≥ γα(G) . . .

be the lower central series of G.
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Well-known that if G = Zn(G) then γn+1(G) = 1 and
conversely.

Locally dihedral 2-group G is hypercentral and
Zω+1(G) = G, whereas γ2(G) = γ3(G) ∼= C2∞ .
Every non-abelian free group F satisfies γω(F ) = 1 but has
trivial centre.
(Smirnov, 1953) If G is a group and Zω(G) = G, then
γω+1(G) = 1
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Generalization of Baer’s Theorem

Schur’s Theorem

Theorem (Known as Schur’s Theorem)

Let G be a group and let C ≤ Z (G), the centre of G. Suppose
that G/C is finite. Then G′, the derived subgroup of G, is finite.

This result first appeared in this form in B. H. Neumann,
Proc. London Math. Soc. (3) 1 (1951), pages 178-187
Is a corollary of an earlier more general result R. Baer,
Trans. American Math. Soc. 58 (1945), 348-389
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Schur’s Theorem-quantitative version

Theorem (J. Wiegold, 1956, 1965)

Let G be a group. Suppose that G/Z (G) is finite and
|G/Z (G)| ≤ t . Then

|G′| ≤ tm, where m = 1/2(log2 t − 1);

If t = pn, for some prime p, then G′ is a p-group of order at
most p1/2n(n−1);
For each prime p and each integer n ≥ 2 there exists a
p-group G with |G/Z (G)| = pn and |G′| = p1/2n(n−1).
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General results of Schur type

If G/Z (G) is locally finite then G′ is locally finite and
Π(G′) ⊆ Π(G/Z (G)).

(Ya D. Polovitzkii, 1964; A. Schlette 1969) If G/Z (G) is
Chernikov then G′ is Chernikov.
(L. A. Kurdachenko, 1993) If G is a group such that
G/Z (G) is a locally (soluble-by-finite) minimax group, then
G′ is also minimax.
On the other hand, if G/Z (G) has min (or max) then G′

need not have min (or max).
If G/Z (G) has finite rank then G′ need not have finite rank.
And if G/Z (G) is periodic then G′ need not be periodic.
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Examples

(A. Olshanskii) There is a group G such that G = G′; Z (G)
is free abelian of countable rank, and G/Z (G) is an infinite
p-group whose proper subgroups have order the prime p.
ie. G/Z (G) is a Tarski monster.

(S. I. Adian, 1971) There is a torsion-free group G such
that G/Z (G) is an infinite finitely generated p-group of
finite exponent.
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More recent results of Schur type

(A. Mann, 2007) If G is a group and G/Z (G) is locally finite
of finite exponent then G′ is locally finite of finite exponent.

Theorem
( L. A. Kurdachenko, P. Shumyatsky, 2013) Let G be a locally
generalized radical group and suppose that G/Z (G) has finite
rank r . Then G′ has finite rank at most β1(r).

This result builds on earlier work of A. Lubotzky, A. Mann (finite
case), S. Franciosi, F. de Giovanni, L. Kurdachenko (soluble
case). G is generalized radical if it has an ascending series
whose factors are either locally nilpotent or locally finite. G is
locally generalized radical if every finitely generated subgroup
of G is generalized radical.
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More recent results of Schur type-Theorem 1

Let p be a prime. The group G has finite section p-rank r if
every elementary abelian p-section of G is finite of order at
most pr and there is an elementary abelian p-section of G
precisely of order pr .

(A. Ballester-Bolinches, S. Camp-Mora, L. Kurdachenko, J,
Otal, 2013) Let G be locally generalized radical and
suppose that G/Z (G) has section p-rank at most s, for the
prime p. Then G′ has section p-rank at most β2(s).
Among the many interesting corollaries there is: Let
G/Z (G) be locally finite with min-p, for all primes p. Then
G′ is locally finite with min-p for all primes p
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Baer’s Theorem

Theorem
(attributed to R. Baer, 1952) Let G be a group and suppose
that G/Zk (G) is finite, for some natural number k. Then

γk+1(G) is finite.
(L. Kurdachenko and I. Subbotin) There is a function β
such that if t = |G/ζk (G)| then |γk+1(G)| ≤ β(t , k).
β is defined recursively by β(t ,1) = tm = w(t), where
m = 1/2(log2 t − 1) and
β(t , k) = w(β(t , k − 1)) + tβ(t , k − 1).
If GN is the nilpotent residual of G then GN is finite and
G/GN is nilpotent.
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Baer’s Theorem

If X is a class of groups, then the X-residual of group G is
GX = ∩{N /G|G/N ∈ X}

If X = Nc then GNc = γc+1(G) and G/GNc ∈ Nc

If X = N then G/GN need not lie in N and need not even
be locally nilpotent.

Free groups are an example

When is G/GN locally nilpotent?

Certainly true for locally
finite groups, but not true for periodic groups in general,
since an infinite finitely generated residually finite p-group
need not be nilpotent.

When is G/GLN locally nilpotent?
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Baer’s Theorem-quantitative version

Theorem
(Kurdachenko, Subbotin 2013) Let G be a group and
suppose that G/Z∞(G) is finite of order t, where
Z∞(G) = Zk (G), for some natural number k. Then

the nilpotent residual GN of G is finite and |GN| ≤ β3(t).
G/GN is nilpotent of nilpotency class at most β4(k , t).
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Generalizations of Baer’s Theorem

Let G be a group and suppose that G/Zk (G) is Chernikov,
for some k . Then γk+1(G) is Chernikov.

(L. Kurdachenko, J. Otal, 2013) Let G be a locally
generalized radical group and suppose that G/Zk (G) has
finite rank r . Then γk+1(G) has rank at most β5(r , k).
there are versions of many of these results for finite
groups. See N. Makarenko (2000) and L. A. Kurdachenko,
A. A. Pypka and N. N. Semko (2014)
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Generalizations of Baer’s Theorem-Theorem A

Theorem

(MD, L. A. Kurdachenko and J. Otal, 2015) Let G be a
locally generalized radical group and let p be a prime.
Suppose that G/Zk (G) has finite section p-rank at most r .
Then γk+1(G) has finite section p-rank. Moreover there
exists a function τ(r , k) such that rp(γk+1(G)) ≤ τ(r , k).
Let G be a group and p a prime. If G/Zk (G) is locally finite
and has min-p, then γk+1(G) is locally finite and has min-p.
(Kurdachenko, Otal and Pypka 2015) Suppose that
G/Zk (G) is locally finite of exponent e. Then γk+1(G) is
locally finite of exponent at most β6(e, k)
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Further Generalizations

Theorem

(M. De Falco, F. de Giovanni, C. Musella, Ya. P. Sysak,
2011) Let G be a group.Then G/Z∞(G) is finite if and only
if there is a finite normal subgroup L such that G/L is
hypercentral.
(L. Kurdachenko, J. Otal, I. Subbotin, 2013) If G/Z∞(G) is
finite of order t, then there is a normal subgroup L of G
such that G/L is hypercentral and |L| ≤ td , where
d = 1/2(log2 t + 1).
(C. Casolo, U. Dardano, S. Rinauro, 2016) If G has a finite
normal subgroup L such that G/L is hypercentral then
|G/Z∞(G)| ≤ |Aut(L)| · |Z (L)|
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Further Generalizations-Theorem B

Theorem

(MD, L. Kurdachenko and J. Otal, 2015) Let G be a group,
p a prime. Suppose that G/Z∞(G) is locally finite and has
finite section p-rank r . Then GLN is locally finite,
Π(GLN) ⊆ Π(G/Z ) and there is a function τ3(r) such that
rp(GLN) ≤ τ3(r). Moreover, G/GLN is locally nilpotent.
Let G be a group. Suppose that G/Z∞(G) is locally finite
and has finite rank r . Then GLN is locally finite,
Π(GLN) ⊆ Π(G/Z∞(G)), and there exists a function τ4
such that r(GLN) ≤ τ4(r). Moreover, G/GLN is
hypercentral.
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Further Generalizations

Let G be a group. Suppose that the hypercentre of G
contains a G-invariant subgroup Z such that G/Z is a
Chernikov group. Then GLN is also Chernikov.
Furthermore, G/GLN is hypercentral.

Let G be a group. Suppose that the hypercentre of G
contains a G-invariant subgroup Z such that G/Z is locally
finite and has exponent e. Then the locally nilpotent
residual, GLN, of G is locally finite of exponent at most
β7(e), for some function β2 depending upon e only.
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Example

There is a group G = B o C, where B is an infinite
elementary abelian p-group and C is an infinite dihedral
group such that B = Z∞(G),G/B is polycyclic and such
that G contains no normal subgroup P with P of finite rank
and G/P locally nilpotent.
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Some Remarks Concerning the Proofs: Theorem A

Let 1 = Z0 ≤ Z1 ≤ · · · ≤ Zk−1 ≤ Zk = Z be the upper central
series of G. Use induction on k . The case k = 1 is covered by
Theorem 1.

Apply induction to the group G/Z1. By the induction hypothesis
there is a function τ such that rp(γk (G/Z1)) ≤ τ(r , k − 1).
Set K/Z1 = γk (G/Z1), let L = γk (G).Then K = LZ1, K ′ = L′,
[K ,G] = [L,G] = γk+1(G).
Apply Theorem 1 to L, since rp(L/(L ∩ Z1) ≤ τ(r , k − 1); we get
rp(L′) ≤ λ2(τ(r , k − 1)).
Also turns out that rp(γk+1(G)/L′) ≤ θ(r , τ(r , k − 1)), for some
function θ so
rp(γk+1(G)) ≤ λ2(τ(r , k − 1)) + θ(r , τ(r , k − 1)) = τ(r , k).
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Some Remarks Concerning the Proofs: Theorem B

Let L = family of all finitely generated subgroups of G.

U ∈ L,U ∩ Z = ZU ; U/ZU is a finitely generated, locally finite
group, so finite.
rp(U/ZU) ≤ r , so rp(UN) ≤ τ2(r) and U/UN is nilpotent.
If V ∈ L and 〈U,V 〉 ≤W then UN,VN ≤WN, so R =

⋃
U∈LUN

is a normal locally finite subgroup of G and rp(R) ≤ τ2(r).
G/R is locally nilpotent and R = GLN.
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