Groups in which every subgroup is commensurable to a subnormal subgroup

carlo casolo

Ischia - 31 marzo 2016

carlo casolo

Groups in which every subgroup is comments Ischia - 31 marzo 2016 1 / 13

- 31

For a subgroup H of the group G the following are equivalent:

• *H* is *commensurable to a subnormal subgroup*: there exists *S*⊴⊴*G* such that

 $[S: S \cap H]$ and $[H: S \cap H]$ are finite.

• *H* is subnormal-by-finite: there exists $S \le H$ such that $S \le G$ and $[H : S] < \infty$

- 31

For a subgroup H of the group G the following are equivalent:

• *H* is *commensurable to a subnormal subgroup*: there exists *S*⊴⊴*G* such that

 $[S: S \cap H]$ and $[H: S \cap H]$ are finite.

- *H* is subnormal-by-finite: there exists $S \le H$ such that $S \le G$ and $[H:S] < \infty$
- We say that a group G is sbyf if every H ≤ G satisfies (one of) these conditions.

- J.T. Buckley, J.C. Lennox, B.H. Neumann, H. Smith, J. Wiegold, Groups with all subgroups normal-by-finite. J. Austral. Math. Soc. (1995)
- G. Cutolo, J. C. Lennox, S. Rinauro, H. Smith, J. Wiegold, On infinite core-finite groups. Proc. Roy. Irish Acad. (1996)

4 E N 4 E N

- J.T. Buckley, J.C. Lennox, B.H. Neumann, H. Smith, J. Wiegold, Groups with all subgroups normal-by-finite. J. Austral. Math. Soc. (1995)
- G. Cutolo, J. C. Lennox, S. Rinauro, H. Smith, J. Wiegold, On infinite core-finite groups. Proc. Roy. Irish Acad. (1996)
- H. Heineken, *Groups with neighbourhood conditions for certain lattices.* Note di Matematica (1996)

Heineken's ground

Theorem (Heineken, 1996)

Let G be a sbyf group. Then

- (i) If G is a Baer group then $G \in \mathfrak{N}_1$;
- (ii) if G is locally finite then the Hirsch-Plotkin radical of G has finite index in G.
 - Baer group = all cyclic subgroups subnormal
 - $\mathfrak{N}_1 = \mathsf{all} \text{ subgroups subnormal}$

locally finite groups

Let G be a locally finite sbyf group, B = B(G) its Baer radical.

- (Heineken) may assume that G is locally nilpotent, and a p-group
- $B \in \mathfrak{N}_1$, hence nilpotent by Černikov (C.),
- (Khukhro-Makarenko) \rightarrow reduce to *B* nilpotent and *G*/*B* elementary abelian
- (Möhres Lemma) show that G/B has finite rank

locally finite groups

Let G be a locally finite sbyf group, B = B(G) its Baer radical.

- (Heineken) may assume that G is locally nilpotent, and a p-group
- $B \in \mathfrak{N}_1$, hence nilpotent by Černikov (C.),
- (Khukhro-Makarenko) \rightarrow reduce to *B* nilpotent and *G*/*B* elementary abelian
- (Möhres Lemma) show that G/B has finite rank

Theorem

Let G be a locally finite sbyf group. Then

- (i) G is nilpotent-by-Černikov;
- (ii) there exists an integer d ≥ 1 such that every subgroup of G admits a subgroup of finite index which is subnormal of defect at most d in G

- A TE N - A TE N

イロト イポト イヨト イヨト

- 2

∃ → (∃ →

3

Question

Is a locally finite sbyf group \mathfrak{N}_1 -by-finite?

(the answer may well be NO)

Question

Is a locally finite sbyf group \mathfrak{N}_1 -by-finite?

(the answer may well be NO)

G a p-group, A = G' abelian, $G/A \simeq C_{p^{\infty}}$

 $\left. \begin{array}{l} {\it A \ {\rm has \ no \ proper \ supplements \ in \ } G} \\ {\it G \ {\rm is \ Baer}} \end{array} \right\} \ \Rightarrow \ {\it G \ not \ nilpotent \ and \ } \mathfrak{N}_1.$

- 김씨가 귀구가 귀구가 구구

Question

Is a locally finite sbyf group \mathfrak{N}_1 -by-finite?

(the answer may well be NO)

G a p-group, A = G' abelian, $G/A \simeq C_{p^\infty}$

 $\left. \begin{array}{l} {\it A \ {\rm has \ no \ proper \ supplements \ in \ } G} \\ {\it G \ {\rm is \ Baer}} \end{array} \right\} \ \Rightarrow \ {\it G \ not \ nilpotent \ and \ } \mathfrak{N}_1.$

 $\left.\begin{array}{l} A \text{ has no proper supplements in } G \\ G \text{ is not } Baer \end{array}\right\} \ \Rightarrow \ G \text{ sbyf not } \mathfrak{N}_1\text{-by-finite.}$

ヘロト 不得 とうき とうとう ほう

a conjecture

Conjecture

A locally finite group G is nilpotent-by-Černikov if and only if every subgroup of G is subnormal-by-Černikov.

(with an appropriate definition of "subnormal-by-Černikov")

locally graded groups

Of course, Tarski monsters are sbyf groups;

for locally graded groups the same obstructions occur as in the *CF* case – H. Smith, J. Wiegold, *Locally graded groups with all subgroups normal-by-finite*. J. Austral. Math. Soc. (1996).

Of course, Tarski monsters are sbyf groups;

for locally graded groups the same obstructions occur as in the *CF* case – H. Smith, J. Wiegold, *Locally graded groups with all subgroups normal-by-finite*. J. Austral. Math. Soc. (1996).

Question

does there exists an infinite, finitely generated, residually finite group, in which every subgroup is either finite or has finite index?

Of course, Tarski monsters are sbyf groups;

for locally graded groups the same obstructions occur as in the *CF* case – H. Smith, J. Wiegold, *Locally graded groups with all subgroups normal-by-finite*. J. Austral. Math. Soc. (1996).

Question

does there exists an infinite, finitely generated, residually finite group, in which every subgroup is either finite or has finite index?

Question

does there exists an infinite, finitely generated, residually finite sbyf group, in which every p-section is finite (for all primes p)?

Image: A matrix

A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

trivial fact: if G is any sbyf group, then G/B(G) is periodic.

< □ > < □ > < □ > < □ > < □ > < □ >

- 2

trivial fact: if G is any sbyf group, then G/B(G) is periodic. easy to observe: for a sbyf group G are equivalent:

- every periodic section of G is locally finite;
- G is locally nilpotent-by-finite.

4 E N 4 E N

trivial fact: if G is any sbyf group, then G/B(G) is periodic.

easy to observe: for a sbyf group G are equivalent:

- every periodic section of G is locally finite;
- G is locally nilpotent-by-finite.

Lemma

Let G be a locally graded sbyf group. Then there exists a normal subgroup N such that

- N is finitely generated and
- G/N is locally nilpotent-by-finite.

Locally nilpotent-by-finite sbyf groups are \mathfrak{N}_1 -by-nilpotent-by-Černikov

In fact:

a locally nilpotent-by-finite sbyf group is metanilpotent-by-Černikov

Locally nilpotent-by-finite sbyf groups are $\mathfrak{N}_1\text{-}\mathsf{by-nilpotent-by-}\check{\mathsf{C}}\mathsf{ernikov}$

In fact:

a locally nilpotent-by-finite sbyf group is metanilpotent-by-Černikov

Question

Is a locally nilpotent-by-finite sbyf group \mathfrak{N}_1 -by-(finite rank)?

イモトイモト

Locally nilpotent-by-finite sbyf groups are \mathfrak{N}_1 -by-nilpotent-by-Černikov

In fact: a locally nilpotent-by-finite sbyf group is metanilpotent-by-Černikov

Question

Is a locally nilpotent-by-finite sbyf group \mathfrak{N}_1 -by-(finite rank)?

Theorem

A torsion-free locally nilpotent-by-finite sbyf group is nilpotent-by-finite.

Let $d \ge 1$. We say that the group G is d-sbyf if for every $H \le G$ there exists $S \le H$ such that

 $|H:S| \leq \infty$ and S is subnormal of defect at most d in G.

setting bounds I

- Let $d \ge 1$. We say that the group G is d-sbyf if for every $H \le G$ there exists $S \le H$ such that
 - $|H:S| \leq \infty$ and S is subnormal of defect at most d in G.
 - 1-sbyf groups are the core-finite groups of Buckley et al.: *locally finite* 1-sbyf groups are abelian-by-finite.

b) a = b, a = b

setting bounds I

- Let $d \ge 1$. We say that the group G is d-sbyf if for every $H \le G$ there exists $S \le H$ such that
 - $|H:S| \leq \infty$ and S is subnormal of defect at most d in G.
 - 1-sbyf groups are the core-finite groups of Buckley et al.: *locally finite* 1-sbyf groups are abelian-by-finite.
 - Heineken-Mohamed groups are 2-sbyf: *they are not nilpotent-by-finite*.

• • = • • = •

Let $d \ge 1$. We say that the group G is *d*-sbyf if for every $H \le G$ there exists $S \le H$ such that

 $|H:S| \leq \infty$ and S is subnormal of defect at most d in G.

- 1-sbyf groups are the core-finite groups of Buckley et al.: locally finite 1-sbyf groups are abelian-by-finite.
- Heineken-Mohamed groups are 2-sbyf: *they are not nilpotent-by-finite*.

By Theorem 2 every locally finite sbyf group is *d*-sbyf for some $d \ge 1$. Is this true for locally nilpotent-by-finite sbyf groups ?

ヘロト 不得 とうき とうとう ほう

Conjecture

carlo casolo

There exists $f : \mathbb{N} \to \mathbb{N}$ such that if G is a locally finite d-sbyf group then G has a normal subgroup N with G/N Černikov and $\gamma_{f(d)}(N) = 1$.

э

Conjecture

There exists $f : \mathbb{N} \to \mathbb{N}$ such that if G is a locally finite d-sbyf group then G has a normal subgroup N with G/N Černikov and $\gamma_{f(d)}(N) = 1$.

cfr.

Theorem (Roseblade, 1965)

A group in which every subgroup is d-subnormal is nilpotent of class bounded by a function of d.

Conjecture

There exists $f : \mathbb{N} \to \mathbb{N}$ such that if G is a locally finite d-sbyf group then G has a normal subgroup N with G/N Černikov and $\gamma_{f(d)}(N) = 1$.

cfr.

Theorem (Roseblade, 1965)

A group in which every subgroup is *d*-subnormal is nilpotent of class bounded by a function of *d*.

Theorem (Detomi, 2004)

Let G be a periodic group in which every subgroup has finite index in a d-subnormal subgroup, then $\gamma_{\delta(d)}(G)$ is finite.

setting bounds II

Let $n \ge 1$. We say that the group G is sbyf-n if for every $H \le G$ there exists $S \le H$ such that

S is subnormal in G and $|H:S| \leq n$.

A B K A B K

setting bounds II

3

Let $n \ge 1$. We say that the group G is sbyf-n if for every $H \le G$ there exists $S \le H$ such that

S is subnormal in G and $|H:S| \leq n$.

sbyf-1 groups are just the \mathfrak{N}_1 groups

setting bounds II

Let $n \ge 1$. We say that the group G is sbyf-n if for every $H \le G$ there exists $S \le H$ such that

S is subnormal in G and $|H:S| \leq n$.

sbyf-1 groups are just the \mathfrak{N}_1 groups

Theorem

There is a function $g : \mathbb{N} \to \mathbb{N}$ such that if G is locally graded sbyf-n group, then $|G/B(G)| \leq g(n)$.

In particular, a locally graded sbyf-n group is \mathfrak{N}_1 -by-finite.

• • = • • = • = =