On metacyclic subgroups of finite groups

Adolfo Ballester-Bolinches¹

¹Universitat de València, València, Spain

Ischia, March, 2016

イロト イポト イヨト イヨト

æ

Introduction Sylow metacyclic groups *p*-Sylow metacyclic groups

Metacyclic subgroups

Group = finite group.

The talk is organised around two questions concerning the influence of metacyclic Sylow subgroups and 2-generator groups on the structure of a group.

ヘロト ヘアト ヘビト ヘビト

ъ

Introduction Sylow metacyclic groups *p*-Sylow metacyclic groups

Metacyclic subgroups

Group = finite group.

The talk is organised around two questions concerning the influence of metacyclic Sylow subgroups and 2-generator groups on the structure of a group.

ヘロト 人間 ト くほ ト くほ トー

æ

Introduction Sylow metacyclic groups *p*-Sylow metacyclic groups

Metacyclic subgroups

In the sequel, *p* will denote a prime.

Adolfo Ballester-Bolinches On metacyclic subgroups of finite groups

イロン 不同 とくほ とくほ とう

3

Introduction Sylow metacyclic groups *p*-Sylow metacyclic groups

Metacyclic subgroups

If $(|G|, p^2 - 1) = 1$ and the Sylow *p*-subgroups of *G* are metacyclic, then *G* is *p*-nilpotent (Huppert I, IV, 5.10).

イロト 不得 とくほ とくほとう

э.

Introduction Sylow metacyclic groups *p*-Sylow metacyclic groups

Metacyclic subgroups

Question

What can be said about the structure of a group with metacyclic Sylow p-subgroups?

Adolfo Ballester-Bolinches On metacyclic subgroups of finite groups

イロト 不得 とくほ とくほとう

3

Introduction Sylow metacyclic groups *p*-Sylow metacyclic groups

Metacyclic subgroups Sylow metacyclic groups

Sylow-metacyclic groups: groups with metacyclic Sylow subgroups.

David Chillag and Jack Sonn: «Sylow-metacyclic groups and Q-admissibility», Israel J. Math., **40**, 307–323 (1981).

ヘロト ヘアト ヘビト ヘビト

æ

Introduction Sylow metacyclic groups *p*-Sylow metacyclic groups

Metacyclic subgroups Sylow metacyclic groups

A group *G* is said to be \mathbb{Q} -admissible if there exists a \mathbb{Q} -central division algebra containing a maximal subfield *K* such that *K* is a Galois extension of \mathbb{Q} and $G(K/\mathbb{Q})$ is isomorphic to *G*.

M. Schacher: «Subfields of division rings, I», J. Algebra, 9, 451–477 (1968).

ヘロト 人間 ト くほ ト くほ トー

Introduction Sylow metacyclic groups *p*-Sylow metacyclic groups

Metacyclic subgroups Sylow metacyclic groups

Theorem

A soluble group is Sylow-metacyclic if and only if it is \mathbb{Q} -admissible.

Jack Sonn: «Q-admissibility of solvable groups», J. Algebra, 84, 411–419 (1983).

ヘロン 人間 とくほ とくほ とう

3

Introduction Sylow metacyclic groups *p*-Sylow metacyclic groups

Metacyclic subgroups Sylow metacyclic groups

Theorem

Let G be a Sylow-metacyclic group. Then G = [N]A, where N is a normal Sylow tower subgroup of G of odd order, and either

- G is soluble and A is a Hall subgroup of G of order 2^a3^b, or
- N is the largest normal subgroup of G of odd order and A is one of the following groups: M₁₁, A₇, A₇⁺, PSL(2, pⁱ), SL(2, pⁱ), PGL(2, pⁱ), PGL(2, pⁱ)⁺, PGL(2, pⁱ)⁻ (i = 1, 2 pⁱ ≥ 5), PGL*(2, p²). In this case, if q ∈ π(N) ∩ π(A), then the Sylow q-subgroups of G are abelian and those of A and N are cyclic.

イロト イポト イヨト イヨト

ъ

Introduction Sylow metacyclic groups *p*-Sylow metacyclic groups

Metacyclic subgroups *p*-Sylow metacyclic groups

> V. D. Mazurov: «Finite groups with metacyclic Sylow 2-subgroups.», Sibirsk. Mat. Ž., 8, 966–982 (1967).

ヘロト ヘアト ヘビト ヘビト

æ

Introduction Sylow metacyclic groups *p*-Sylow metacyclic groups

Metacyclic subgroups

Theorem

Let G be a group with a metacyclic Sylow 2-subgroup S possesing a cyclic normal subgroup N with |S/N| > 2. Then G is soluble.

A. R. Camina and T. M. Gagen: «Groups with metacyclic Sylow 2-subgroups», Cand. J. Math., **21**, 1234–1237 (1969).

ヘロト 人間 ト くほ ト くほ トー

Introduction Sylow metacyclic groups *p*-Sylow metacyclic groups

Metacyclic subgroups

Theorem

If G is a p-soluble group with metacyclic Sylow p-subgroups, then

- if p = 2, then G/O_{2',2}(G) is of odd order, or is isomorphic to Σ₃. In particular, the 2-length of G is at most 2.
- 2) if p > 2, then the p-length of G is at most 1.

V. S. Monakhov and E. E. Gribovskaya: «Maximal and Sylow Subgroups of Solvable Finite Groups», Math. Notes, **70**, 545–552 (2001).

ヘロト ヘアト ヘビト ヘビト

Introduction Sylow metacyclic groups *p*-Sylow metacyclic groups

Metacyclic subgroups

Theorem (with Su and Wang)

Let G be a group with metacyclic Sylow p-subgroups. Suppose that $G/O_{p'p}(G)$ is of odd order, and let $G^* = G/O_{p'}(G)$. Then G^* has a normal Sylow p-subgroup P^* , and $G^* = [P^*](H_1 \times H_2)$, where H_1 is an abelian group of exponent dividing p - 1, H_2 is a cyclic group with exponent dividing p + 1. In particular, G' is p-nilpotent.

ヘロン 人間 とくほ とくほ とう

1

Introduction Sylow metacyclic groups *p*-Sylow metacyclic groups

Metacyclic subgroups

Theorem (with Su and Wang)

Let G be a group with metacyclic Sylow p-subgroups. If $|G/O_{p'p}(G)|$ and p + 1 are coprime, then G is p-supersoluble.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Introduction Sylow metacyclic groups *p*-Sylow metacyclic groups

Metacyclic subgroups

Corollary (with Su and Wang)

Suppose G is a group of odd order with metacyclic Sylow p-subgroups. Then G is p-supersoluble if and only if $|G/O_{p'p}(G)|$ and p + 1 are coprime.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Introduction Sylow metacyclic groups *p*-Sylow metacyclic groups

Metacyclic subgroups

Corollary (Berkovich)

Let the group G = AB be the product of the subgroups A and B. If G is of odd order and the Sylow p-subgroups of A and B are cyclic, then G is p-supersoluble.

ヘロン 人間 とくほ とくほ とう

1

Introduction Sylow metacyclic groups *p*-Sylow metacyclic groups

Metacyclic subgroups

Theorem (with Su and Wang)

Assume p is odd and let G be a group with metacyclic Sylow p-subgroups. Set $G^* = G/O_{p'}(G)$. Then $(|G/O_{p'p}(G)|, p-1) = 1$ if and only if G^* satisfies the following

properties:

(1) A Sylow p-subgroup of G^* is normal in G^* .

(2) The Hall p'-subgroups of G^* are cyclic groups of odd order dividing p + 1.

イロト イポト イヨト イヨト 一臣

Introduction Sylow metacyclic groups *p*-Sylow metacyclic groups

Metacyclic subgroups

Theorem (with Su and Wang)

Suppose that a Sylow *p*-subgroup of a group *G* is metacyclic. Then *G* is *p*-nilpotent if and only if $(|G/O_{p'p}(G)|, p^2 - 1) = 1$.

ヘロン 人間 とくほ とくほ とう

ъ

2-generator subgroups

Aim: characterise the non-nilpotent groups in which every 2-generator subgroup is metacyclic (Shirong Li's question). Basic idea: Assume that a group *G* has 2-generator subgroups in a class \mathcal{X} of groups which is subgroup-closed and the minimal non- \mathcal{X} -groups are 2-generator. Then *G* belongs to \mathcal{X} .

2-generator subgroups

Aim: characterise the non-nilpotent groups in which every 2-generator subgroup is metacyclic (Shirong Li's question). Basic idea: Assume that a group *G* has 2-generator subgroups in a class \mathcal{X} of groups which is subgroup-closed and the minimal non- \mathcal{X} -groups are 2-generator. Then *G* belongs to \mathcal{X} .

2-generator subgroups

Soluble:

P. Flavell: «Finite groups in which every two elements generate a soluble subgroup», Invent. Math., **121**, 279–285 (1995).

Supersoluble:

K. Doerk: «Minimal nicht überauflösbare, endliche Gruppen», Math. Z., **91**, 198–205 (1966).

Nilpotent:

B. Huppert: «Endliche Gruppen I», Satz III, 5.2 (1967).

・ 同 ト ・ ヨ ト ・ ヨ ト

2-generator subgroups

Minimal non-metacyclic *p*-groups:

N. Blackburn: «Generalizations of certain elementary theorems on *p*-groups», Proc. London Math. Soc., **11**, 1–22 (1961).

Consequence: the class \mathcal{M} of all groups with 2-generator subgroups metacyclic contains non-metacyclic groups.

(本間) (本語) (本語)

2-generator subgroups

Minimal non-metacyclic *p*-groups:

N. Blackburn: «Generalizations of certain elementary theorems on *p*-groups», Proc. London Math. Soc., **11**, 1–22 (1961).

Consequence: the class \mathcal{M} of all groups with 2-generator subgroups metacyclic contains non-metacyclic groups.

・ 同 ト ・ ヨ ト ・ ヨ ト

2-generator subgroups

For odd primes p, the p-groups in \mathcal{M} are exactly the modular ones.

Adolfo Ballester-Bolinches On metacyclic subgroups of finite groups

ヘロト 人間 ト くほ ト くほ トー

ъ

2-generator subgroups

Theorem

The class of 2-groups in \mathcal{M} coincides with the class of monotone 2-groups.

A. Mann: «The number of generators of finite *p*-groups», J. Group Theory., **8**, 317–337 (2005); **14**, 329–331 (2011).

A group *G* is monotone if for every pair (H, K) of subgroups of *G*, $H \le K$ implies that $d(H) \le d(K)$.

ヘロト 人間 ト くほ ト くほ トー

2-generator subgroups

Classification:

E. Crestani and F. Menegazzo: «On monotone 2-groups», J. Group Theory, **15**, 359–383 (2012).

イロン 不同 とくほう イヨン

æ

2-generator subgroups

Theorem (with Cossey)

A non-nilpotent group G has 2-generator subgroups metacyclic if and only if

- G is supersoluble and metabelian, with Sylow subgroups modular for odd primes and monotone groups for the prime 2.
- ② $N = G^{\mathfrak{N}}$ (the nilpotent residual of G) is abelian (and ≠ 1) and so G = NH, $N \cap H = 1$ for every Carter subgroup H of *G*.

イロト イポト イヨト イヨト

2-generator subgroups

Theorem (with Cossey)

- H acts on N as power automorphisms and if π is the set of primes dividing N then every Sylow p-subgroup of H is cyclic if p ∈ π and if H_{π'} is a Hall π'-subgroup of H, then H_{π'}/C_{H_{π'}}(N) is cyclic.
- If q ∈ π', and H_q is a Sylow q-subgroup of H and x ∉ C_{H_q}(N) and y ∈ C_{H_q}(N), then K = ⟨x, y⟩ = U⟨x⟩ with U cyclic, normal in K and contained in C_H(N).

ヘロン 人間 とくほ とくほ とう

2-generator subgroups

Let *G* be a group. For each isomorphism type of chief factor *A* (as *G*-module) let $\delta_G(A)$ denote the number of complemented chief factors of *G* isomorphic to *A* in a fixed chief series and let $\Omega(G)$ denote the set of non-isomorphic complemented chief factors.

・聞き ・ヨト ・ヨト

2-generator subgroups

Lemma

Assume that G is supersoluble. With the notation above

 $d(G) = max_{A \in \Omega(G)}h_G(A)$

where $h_G(A) = (\delta_G(A) + 1 - \theta_G(A))$ and $\theta_G(A) = 1$ if A is a trivial G-module, and $\theta_G(A) = 0$ otherwise.

A. Lucchini and M.C.Tamburini: «Minimal generation of finite soluble groups by projectors and normalizers», Glasg. Math. J., **41**, 303–312 (1999).

ヘロン ヘアン ヘビン ヘビン