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Interval exchange transformations

Let I denote the half-open interval [0, 1) and let

π = {a0, a1, ..., an}, 0 = a0 ≤ ai < ai+1 ≤ an = 1

be a partition of I into n subintervals [ai, ai+1), i = 0, ..., n − 1. A left-continuous
bijection f : [0, 1) → [0, 1) acting as piecewise translation, i.e. shuffling the subintervals
[ai, ai+1), is called an interval exchange transformation (iet) of I . The group of all
interval exchange transformations of I is denoted by IET.

The action of an exemplary iet for n = 6 is demonstrated on the scheme below:

0 1

0 1
Every transformation f ∈ IET may be represented in a (unique) canonical form as a
pair

f = (π, σ),

where π is a partition of I into n subintervals (n being the smallest possible), and σ ∈ Sn
is a permutation of the set of n elements.

Topology on IET

Let IETσ denote the set of all iets with canonical form defined with a given permutation
σ ∈ Sn. The natural topology on IET arises from the mutual correspondence between
the subsets IETσ, σ ∈ Sn+1, and the standard n-dimensional open simplex

∆n = {(x1, x2, ..., xn+1) ∈ R+
n+1 |

n+1
∑

i=1

xi = 1},

which is given by:

ψ : IETσ −→ ∆n
ψ({a0, a1, ..., an+1}, σ) = (a1 − a0, a2 − a1, ..., an+1 − an).

The assumptions imply that IET is a disjoint union of all IETσ, and hence if all of IETσ
are defined to be open, we obtain the topology on IET.

We note that IET is not a topological group with this topology, as the operation of
composition of iets is not continuous.

Rational interval exchange transformations

An interval exchange transformation f = (π, σ) ∈ IET defined by the rational partition
π = {a0, a1, ..., an} where all ai are rational numbers is called rational iet. The subset
of all rational iets is a subgroup of IET, which we denote by RIET.

Every rational interval exchange transformation may be considered as a transformation
defined by the partition πn of interval I into n subintervals of equal length.

If f = (π, σ), where π = {0, a1, ..., an−1, 1}, where ai = pi
qi
∈ Q, is a ratio-

nal interval exchange transformation, then there exists a rational partition πq into
q = LCM (q1, ..., qn−1) subintervals of equal length such that f shuffles the q subintervals
defined by πq according to a permutation σ′ ∈ Sq such that the action of f ′ = (πq, σ

′)
on I is equivalent to the action of f .

Moreover, if f and g are two rational iets, then there exists a partition πm of the interval I
into m equally sized subintervals, such that f and g act on I by shuffling the subintervals
defined by πm (it is enough to take m as the least common multiplier of all endpoints of
partitions defining f and g).

Remark. RIET is a dense subgroup of IET.

Supernatural numbers

A sequence of natural numbers n̄ = (n1, n2, ...) is called the divisible sequence, if ni|ni+1
(ni divides ni+1) for every i ∈ N. In the divisible sequence n̄ the set of prime divisors of ni
is contained in the set of prime divisors of ni+1 and this includes also the multiplicities of
these divisors. Thus with every divisible sequence n̄ one may associate the supernatural
number n̂, defined as the formal product

n̂ =
∏

pi∈P

p
εi
i ,

where P denotes the (naturally ordered) set of all primes, and εi ∈ N∪ {0,∞} for every
i ∈ N.

The supernatural number n̂ associated to the divisible sequence n̄ is called the charac-
teristic of this sequence.

Subgroups of RIET
defined by supernatural numbers

By RIET(n) = {f ∈ RIET | f = (πn, σ), σ ∈ Sn}, n ∈ N we denote the subgroup of
RIET, isomorphic to Sn. For a divisible sequence n̄ = (n1, n2, ...) we define the diagonal
embeddings

ϕi : RIET(ni) →֒ RIET(ni+1),

where ni|ni+1, which correspond to the diagonal embeddings of Sni into Sni+1
.

Subgroups of RIET
defined by supernatural numbers

In particular, if f = (πni, σ) ∈ RIET(ni) and ni+1 = k ·ni then the diagonal embedding
ϕi is defined by the following rule:

fϕi
([

l · ni + j

ni+1
,
l · ni + j + 1

ni+1

))

=

[

l · ni + σ(j)

ni+1
,
l · ni + σ(j) + 1

ni+1

)

,

for all j = 0, 1, ..., ni − 1 and l = 0, 1, ..., k − 1.

The groups RIET(n) together with the diagonal embeddings form a direct system of
groups. The corresponding direct limit:

RIET(n̄) = lim
i
RIET(ni)

is a subgroup of RIET.

For instance, if M̂ =
∏

pi∈P
p∞i is the characteristic of the divisible sequence m̄, then

RIET(m̄) = RIET.

Results

Let n̂ be a supernatural number with characteristic n̄. Then

• If n̂ is infinite, then the subgroup RIET(n̄) is isomorphic to the homogeneous symmetric
group Sn̄.

• If n̂ is infinite, then the subgroup RIET(n̄) is dense in RIET.

•RIET(n̂) is either finite or locally finite. In particular RIET(n̂) is finitely generated if
and only if it is finite.

• If n̄ = (n1, n2, ...) and m̄ = (ni, ni+1, ...), i > 1, then RIET(n̄) = RIET(m̄).

• For every prime p the subgroup RIET(p∞) is the minimal dense subgroup of IET in
the lattice of all subgroups of RIET defined by supernatural numbers.

• If 2∞|n̂ then the group RIET(n̂) is perfect, i.e. RIET(n̂)′ = RIET(n̂).

• If 2∞ ∤ n̂ then the derived subgroup RIET(n̂)′ is a proper subgroup of RIET(n̂) and
consists of all the iets from RIET(n̂), which are defined by even permutations.

•RIET(2∞) is generated by the set S of all rational iets defined as:

S = {(π2n, σ) | σ = (i, i + 1), i ≤ 2n−1}
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Abstract
Let p be a prime. Every finite groupG has a normal series each of whose quotients either is

p-soluble or is a direct product of nonabelian simple groups of orders divisible byp. The non-p-
soluble lengthλp(G) is defined as the number of non-p-soluble quotients in a shortest series of
this kind.

We deal with the question whether, for a given primep and a given proper group varietyV,
the non-p-soluble lengthλp(G) of a finite groupG whose Sylowp-subgroups belong toV is
bounded.

In joint work with Pavel Shumyatsky, we answer the question in the affirmative in some cases
(working separately the casep = 2) for varieties of groups in which the commutators have some
restrictions about their order.

Non-Soluble and Non-p-Soluble Length

Every finite groupG has a normal series each of whose quotient either is soluble
or is a direct product of nonabelian simple groups. In [5] thenonsoluble lengthof
G, denoted byλ(G), was defined as the minimal number of nonsoluble factors in a
series of this kind: if

1 = G0 ≤ G1 ≤ · · · ≤ G2h+1 = G

is a shortest normal series in which fori even the quotientGi+1/Gi is soluble (pos-
sibly trivial), and fori odd the quotientGi+1/Gi is a (non-empty) direct product of
nonabelian simple groups, then the nonsoluble lengthλ(G) is equal toh. For any
prime p, a similar notion of non-p-soluble lengthλp(G) was defined by replacing
“soluble” by “p-soluble” and “simple” by “simple of order divisible byp”. Recall
that a finite group is said to bep-solubleif it has a normal series each of whose quo-
tients is either ap-group or ap′-group. We have,λ(G) = λ2(G), since groups of odd
order are soluble by the Feit–Thompson theorem [3].
We show a specific normal series that allow to obtain the non-p-soluble length of a

finite groupG. For this we establish some notations.
The soluble radical of a groupG, the largest normal soluble subgroup, is denoted

by R(G). The largest normalp-soluble subgroup is called thep-soluble radicaland
it will be denoted byRp(G).
Consider the quotient̄G = G/Rp(G) of G by its p-soluble radical. The socle

Soc(Ḡ), that is, the product of all minimal normal subgroups ofḠ, is a direct prod-
uctSoc(Ḡ) = S1 × · · · × Sm of nonabelian simple groupsSi of order divisible byp.
Set the following series

1 = G0 ≤ Γ1 ≤ M1 ≤ Γ2 ≤ M2 · · · ≤ G

whereΓi andMi are defined recursively by

Mi

Γi−1
= Rp

(

G

Γi−1

)

Γi

Mi
= Soc

(

G

Mi

)

.

The number ofΓi appearing in this series is the non-p-soluble length ofG.
Upper bounds for the nonsoluble and non-p-soluble length appear in the study of

various problems on finite, residually finite, and profinite groups. For example, such
bounds were implicitly obtained in the Hall–Higman paper [4] as part of their reduc-
tion of the Restricted Burnside Problem top-groups.
—————————

The Problem

There is a long-standing problem onp-length due to Wilson (Problem 9.68 in
Kourovka Notebook [1]):for a given primep and a given proper group varietyV,
is there a bound for thep-length of finitep-soluble groups whose Sylowp-subgroups
belong toV?
In [5] the following problem, analogous to Wilson’s problem, was suggested.

Problem A.For a given primep and a given proper group varietyV, is there a bound
for the non-p-soluble lengthλp of finite groups whose Sylowp-subgroups belong to
V?

It was shown in [5] that an affirmative answer to Problem A would follow from
an affirmative answer to Wilson’s problem. On the other hand,Wilson’s problem so
far has seen little progress beyond the affirmative answers for soluble varieties and
varieties of bounded exponent [4] (and, implicit in the Hall–Higman theorems [4],
for (n-Engel)-by-(finite exponent) varieties). Problem A seems to be more tractable.

Results

In the sequel we give some useful definitions and we present some positive answer
to Problem A. For instance in [5] a positive answer was obtained in the case of any
variety that is a product of varieties that are either soluble or of finite exponent.
Now we define a group variety, that contains the varieties of soluble and of finite

exponent groups like particular cases, and offer us some groups varieties for which
Problem A has positive answer.

Definition. LetW(w, e) be the variety of all groups in whichwe-values are trivial,
wherew is a group-word ande is a positive integer.

We obtain the following theorem [2]:

Theorem 1.Let k, e be positive integers andp an odd prime. LetP be
a Sylowp-subgroup of a finite groupG and assume thatP belongs to
W(δk, p

e). Thenλp(G) ≤ k + e− 1.

Using the previous theorem and some others tools we obtain a generalization in the
odd case of the result of Shumyatsky and Khukhro about the product of varieties

Theorem 2.Let G be a finite group of order divisible byp, where p
is an odd prime. If a Sylowp-subgroupP of G belongs to the vari-
ety W(δk1, e1)W(δk2, e2) · · ·W(δkn, en), then λp(G) is {k1, e1, ..., kn, en}-
bounded.

We are trying to prove that the previous theorems remain valid also forp = 2 but
so far we have not been able to prove that case. The case wherek = 0 in Theorem 1
was handled in [5] for any primep. Further, it is immediate from [6, Proposition 2.3]
that if the order of[x, y] divides2e for eachx, y in a Sylow 2-subgroup ofG, then
λ(G) ≤ e. Hence, Theorem 1 is valid for any primep wheneverk ≤ 1.
More recently in the casep = 2, we obtained a new result in the way to the

Theorem 2.
Given p = 2, the non-soluble lengthλ(G) of a finite group whose Sylow

2-subgroups belong to the product of several varieties of typeW(δ1, e) is bounded.

Theorem 3.Let G be a finite group, and letP be a Sylow 2-
subgroup of G such that P belongs to a product of varieties
W(δ1, e1)W(δ1, e2) · · ·W(δ1, en). Then the non-soluble length is bounded
by a function depending only ofei, i = 1, 2, . . . , n.

The following lemma was proved in [5]. It depends on the classification of finite
simple groups, and it should be noted as one of the strongest tools for obtaining the
above results. We need to introduce the following definition.
Let G be a finite group andSoc(G/Rp(G)) = S1 × · · · × Sm. The groupG induces

by conjugation a permutational action on the set{S1, . . . , Sm} . Let Kp(G) denote
the kernel of this action. In [5]Kp(G) was given the name of thep-kernel subgroup
of G. Clearly,Kp(G) is the full inverse image inG of

⋂

NḠ(Si).

Lemma.Thep-kernel subgroupKp(G) has non-p-soluble length at most 1.
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Introduction

Mealy automaton, or transducer:
A = 〈Q, A, δ, λ〉, where
δ : Q× A→ Q is the restriction function and
λ : Q× A → A is the output function. So each tran-
sition can be depicted as:

q
a|b−−−→p

to denote δ(q, a) = p, and λ(q, a) = b.
These actions extends in a natural way to Q∗ and A∗.
• It is invertible if λq(◦) = λ(q, ◦) ∈ Sym(A) for any

q ∈ Q.
•Each state q gives rise to a one-to-one map q :

Ak → Ak.
•The inverse q−1 obtained building A−1 ob-

tained from q
a|b−−−→p by swapping input/output

q−1 b|a−−−→p−1.
•Hence {q}q∈Q acts on A∗. These transformations

give rise to a semigroup S(A) = 〈q : q ∈ Q〉 (not
invertible case), or a group G(A) = Gp〈q : q ∈ Q〉.

Why automaton groups?

•Burnside problem. Infinite finitely generated torsion
groups. (Grigorchuk group 1984).
•Milnor problem. Constructions of groups of inter-

mediate growth. (Grigorchuk group 1984).
•Atiyah problem. Computation of L2 Betti numbers.

(Lamplighter group 2000. Grigorchuk, Linnell,
Schick, Żuk).
•Day problem. New examples of amenable groups.
•Gromov problem. Groups without uniform expo-

nential growth (Wilson 2002).

A geometric perspective via the
enriched dual

•A = 〈Q, A, δ, λ〉, G(A) = FQ/N. Is there a combi-
natorial description of the relations N?
•Using a “Stallings’s approach” we need two ingre-

dients: the dual of a transducer and the notion of
an inverse transducer.
•The dual ∂A = 〈A, Q, λ, δ〉

p
a|b−−−→q ∈ A if and only if a

p|q−−−→b ∈ ∂A
• In this case ∂A is a reversible transducer (co-

deterministic in the input)

• In this case we can give a structure of inverse trans-
ducer (introduced by Silva)
•We enrich ∂A = 〈A, Q, λ, δ〉 with a structure of

inverse transducer ∂A− = 〈A, Q̃, λ, δ〉 with Q̃ =
Q ∪Q−1

Theorem. Let A = 〈Q, A, λ, δ〉 be an invertible
transducer, with G(A) ' FQ/N. Consider the trans-
ducer (∂A)− = (A, Q̃, ◦, ·), and let

N ⊆
⋂

a∈A

L
(
(∂A)−, a

)
be the maximal subset invariant for the action of δ
on Q̃∗. Then N = N .

Example: Adding Machine

Let A be the following transducer:

• It performs addition of one unit in binary:
λ(a, 1011) = 0111.
•The defined group is G(A) ' Z

Free groups

•The Aleshin transducer on three state was the
first example of free group ' F3 (the original
proof of the freeness was not complete, it was
fixed by M. Vorobets and Y. Vorobets in 2006).
•Bounded automata cannot generate free groups

(Sidki, Nekrashevych).

•Other examples of transducers defining a free
group: they are all bireversible!
i.e. co-deterministic in both input and output.

Some open problems regarding bireversible
transducers

Virtually Free
Conjecture: If the transducer is bireversible, then
G(A) is virtually free if and only if G(∂A) is also
virtually free.
Burnside
Conjecture: If the transducer is bireversible, then it
does not generate an infinite Burnside group.
Freeness
Are there transducers defining free groups of rank
> 1 which are not bireversible (the adding machine
is not bireversible ' Z)?

Freeness using the enriched dual

Build a transducer with a sink state which is not
bireversible defining a free group.

Definition. A,B on the same set of states Q, we say
that B dually embeds into A, in symbols B ↪→d A, if
∂B is a proper connected component of ∂A.

Corollary If B ↪→d A there is an epimorphism
ψ : G(A) � G(B).

A series of auxiliary transducers

Consider the following series of transducers ∂SQ =
(Q, Q ∪ {e}, ◦, ·)

Theorem. Let B be a transducer such that G(B) is
a free group, and let ∂A = ∂Be t ∂SQ. Then A is
a transducer with sink that is accessible from any
state which also defines a free group.

•However they do not acts transitively on A∗.

Open Problem Is there a transducer with sink (not
bireversible) which acts transitively on A∗ and de-
fines a free group?

Fragile words

We consider the class of transducers with a sink e
(acting like the identity) which is accessible from
every state, the minimal reduced relations w ∈ Q̃∗

are fragile in the sense that there is a letter a such
that δ(a, w) = ε:

q3q1q2q−1
1 q−1

2 q−1
3 q2q1q−1

2 q−1
1

• Example fragile words for SQ. The action of qi is a substi-
tutive morphism qi → e.

• Fragile words obtained by “nesting” commutators [[a, b], c].

• There are other which are not express in this form: as labels
of special paths in special 2-complexes for instance

(ab−1cbc−1a−1)(ab−1a−1b)(cb−1aba−1c−1)(cb−1c−1b) = ab−1cbc−1b−1a−1bcb−1aba−1b−1c−1b

Open Problem
Characterize fragile words for the special case of SQ, in par-
ticular the shortest are of the commutators form.

Cayley type transducers

The 0-transition Cayley machine
C(G) = (G, (G), δ, λ) is the transducer defined on
the alphabet G = {g : g ∈ G} whose transitions
are of the form
• g

(x)|(x)−−−→gx for all g, x ∈ G such that g 6= x;
• g

(x)|(e)−−−→e for all g, x ∈ G such that g = x.
Similarly, we define the bi-0-transition Cayley ma-
chine C̃(G) = (G, (G), δ, λ) with transitions given
by:
• g

(x)|(x)−−−→gx for all g, x ∈ G such that g 6= x and
g 6= e;
• g

(x)|(e)−−−→e for all g, x ∈ G such that g = x and
g 6= e;
• e

(x)|(e)−−−→x for all x ∈ G.

On the left the transducer C(Z3), on the right its dual ∂C(Z3).

Theorem.
• For any non trivial finite group G, the semigroup
S(∂C(G)) is free and so the group G(∂C(G)) has
exponential growth, for any non trivial group G.
•The (finite) group G is a quotient of G(∂C(G)) and
G(∂C̃(G)).

Open Problems The groups generated by the dual
of the 0-transition Cayley machines have exponen-
tial growth. What can be said about the amenabi-
lity of such groups? More generally, is it possible to
find a suitable output-coloring of such transdu-
cers in order to get free groups or free products of
groups? This question can be specialized for the
Cayley machines, where G = Zn. Are the groups
generated by dual of 0-transition Cayley machine
C(Zn) free? Are the groups generated by dual of 0-
transition Cayley machine C̃(Zn) free products? In
any case, does there exists a simple combinatorial
description of the relations and fragile words?
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Groups of intermediate growth
The first examples of groups of intermediate
word growth were constructed by Grigorchuk
in [2], who found an uncountable family of
such groups. A natural generalization of these
groups was defined by Šunić in [4]. The groups
in question are groups of automorphisms of the
rooted infinite p-regular tree for any prime p.

Definition (Šunić groups [4]). Let A := 〈a〉 ∼=
Z/pZ and B ∼= Am for some m ≥ 1. For an
epimorphism ω : B → A and an automorphism
ρ : B → B, define

Gω,ρ = 〈a,B〉

where a acts as the p-cycle (1, 2, . . . , p) on the first
level of the tree and the action of b ∈ B is recur-
sively defined by

b := (ω(b), 1, 1, . . . , ρ(b)).

ω(b)

...

1

...

ρ(b)

ω(ρ(b))

...

1 ρ2(b)

...

b

Examples
• “First” Grigorchuk group: p = m = 2 and
b = (a, c), c = (a, d), d = (1, d) (torsion)

• Grigorchuk–Erschler group: p = m = 2 and
b = (a, b), c = (a, d), d = (1, c) (non-torsion)

• Fabrykowski–Gupta group: p = 3,m = 1
and b = (a, 1, b) (non-torsion).

Properties
• All are self-similar.
• Except for the infinite dihedral group (p =

2,m = 1): branch groups, intermediate
growth (thus amenable but not elementary
amenable).

• Some of them are torsion groups, some not.

Maximal subgroups
In a finitely generated group, every subgroup is
contained in a maximal subgroup, so it is natural
to study the maximal subgroups of a given group.
Maximal subgroups also correspond to primitive
actions of the ambient group (primitive actions
are the building blocks of all other actions).

When does a group have all maximal sub-
groups of finite index (i.e., all primitive actions
are of finite degree)?

Linear groups Margulis and Soifer, 1981: A
finitely generated linear group has all max-
imal subgroups of finite index if and only if
it is virtually solvable.

Branch groups Pervova [3]: For each torsion
group in Grigorchuk’s family, all maxi-
mal subgroups have finite index. Same
for torsion GGS groups. Same result
by Alexoudas–Klopsch–Thillaisundaram for
torsion groups in a generalized family of
GGS groups.

Bondarenko [1]: There exist finitely gen-
erated branch groups with maximal sub-
groups of infinite index. These branch
groups are subgroups of iterated wreath
products of finite perfect groups and are
perfect themselves. Result also holds for
similar groups constructed by P.M. Neu-
mann (1986), D. Segal (2001) and J.S. Wil-
son (2002) (groups of non-uniform expo-
nential growth).

Question
What about the non-torsion groups in Grig-

orchuk and Šunić’s families? They have inter-
mediate growth. Are their maximal subgroups
of finite index?

First theorem: the profinite and AutT topologies
Dense subgroups in the profinite topology A group G has a maximal subgroup of infinite index if
and only if it has a proper subgroup H which is dense in the profinite topology, i.e., HN = G for every
N E G of finite index.

Theorem 1. Every group G in Šuníc’s family has the congruence subgroup property: every N E G of
finite index contains some level stabilizer StG(n). In particular, G has a maximal subgroup of infinite index
if and only if it has a proper subgroup H such that H StG(n) = G for every n.

Main theorem: maximal subgroups of infinite index
Theorem 2. Let G = 〈a,B〉 be a non-torsion Šuníc group acting on the binary tree and pick b ∈ B such
that ab has infinite order. If q is an odd prime, then Hq = 〈(ab)q, B〉 < G is a proper subgroup, dense in
the profinite topology. Hence G contains infinitely many maximal subgroups of infinite index.

Third theorem: maximal subgroups of finite index
Theorem 3. The Fabrykowski–Gupta group acting on the ternary tree has all maximal subgroups of finite
index.

Proof of main theorem
First part: Hq is dense
Proposition (P.-H. Leemann). Let T be the d-regular infinite rooted tree and let G = 〈g1, g2, . . . 〉 ≤ AutT
be countably generated. Then for any m1,m2, . . . coprime with d! the subgroup H = 〈gm1

1 , gm2
2 , . . . 〉

satisfies H StG(n) = G for every n.
If G has the congruence subgroup property, then H is dense in the profinite topology: HN = G for every
N E G of finite index.

Second part: Hq is proper To show that ab 6∈ Hq, we examine the Schreier graphs (orbital graphs)
of G on the boundary of the tree. They are all either one- or two-ended. It suffices to consider the
two-ended ones. The figure below shows a two-ended Schreier graph with respect to the generating set
{a,B} and then the same graph with respect to {ab,B}. The symbol ∗ denotes elements of B which act
non-trivially while ? denotes those that act trivially (there may be multiple such elements in each case).

∗
? ?

∗
? ?

∗
? ?

∗
? ?

∗
? ?

∗
abab

ab

?

?
ab

∗
ab

?

?
ab

∗
ab

?

?
ab

∗
ab

?

?
ab

∗
ab

?

?
ab

?

?

∗

Suppose that w = ab for some w ∈ Hq. Then w and ab should produce the same paths starting at any
vertex in the Schreier graph shown above. But (ab)±q moves q edges to the left or right while each ∗
moves vertically, preserving the “horizontal coordinate”, and ? does nothing. So no word in {(ab)q, B}
can act like ab on this orbit of a boundary point.
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Introduction
A Beauville surface of unmixed type is a compact complex sur-
face isomorphic to (C1 × C2)/G, where C1 and C2 are alge-
braic curves of genus at least 2 and G is a finite group act-
ing freely on C1 × C2 and faithfully on the factors Ci such that
Ci/G ∼= P1(C) and the covering map Ci → Ci/G is ramified
over three points for i = 1, 2. Then the group G is said to be a
Beauville group. For a couple of elements x, y ∈ G, we define∑(

x, y
)

=
⋃
g∈G

(
〈x〉g ∪ 〈y〉g ∪ 〈xy〉g

)
,

that is, the union of all subgroups of G which are conjugate to
〈x〉, to 〈y〉 or to 〈xy〉. Then G is a Beauville group if and only if
the following conditions hold:
1 G is a 2-generator group.
2 There exists a pair of generating sets {x1, y1} and {x2, y2} of
G such that Σ(x1, y1) ∩ Σ(x2, y2) = 1.

Then {x1, y1} and {x2, y2} are said to form a Beauville structure
for G.
In [1], it has been shown that there are infinitely many Beauville
p-groups for p ≥ 5. The existence of infinitely many Beauville
3-groups is proved in [4]; however, the proof does not yield
explicit groups. The first explicit infinite family of Beauville 3-
groups has been recently given in [3].
In [2], Boston conjectured that if p ≥ 5 and F is either the
free group on two generators or the free product of two cyclic
groups of order p, then its p-central quotients F/λn(F ) are
Beauville groups. We prove Boston’s conjecture. In fact, in
the case of the free product, we extend the result to p = 3.

The free group on two generators [5]

Definition
For any group G, the normal series

G = λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) ≥ . . .

given by λn(G) = [λn−1(G), G]λn−1(G)p for n > 1 is called the
p-central series of G. A quotient group G/λn(G) is said to be a
p-central quotient of G.

Lemma 1

Let F = 〈x, y〉 be the free group on two generators. Then xpn−2

and ypn−2 are linearly independent modulo λn(F ) for n ≥ 2.

Lemma 2

If G = F/λn(F ), the power subgroups M pn−2 are all different
and of order p in λn−1(F )/λn(F ), as M runs over the p + 1
maximal subgroups of G. In particular, all elements in M r
Φ(G) are of order pn−1.

Theorem 1
Let F = 〈x, y〉 be the free group on two generators. Then a
p-central quotient F/λn(F ) is a Beauville group if and only if
p ≥ 5 and n ≥ 2.

The free product of two cyclic groups
of order p [5]

Theorem 2
Let F = 〈x, y | xp, yp〉 be the free product of two cyclic groups
of order p. Then a p-central quotient F/λn(F ) is a Beauville
group if and only if p ≥ 5 and n ≥ 2 or p = 3 and n ≥ 4.
Thus for p = 3, p-central quotients in Theorem 2 constitute
an infinite family of Beauville 3-groups.

Recall that
The Nottingham group N over the field Fp, for odd p, is
the (topological) group of normalized automorphisms of
the ring Fp[[t]] of formal power series.
For any positive integer k, the automorphisms f ∈ N
such that f (t) = t +

∑
i≥k+1 ait

i form an open normal
subgroup Nk of N of p-power index.

In [3], it has been shown that if p = 3 then a quotient N /Nk

is a Beauville group if and only if k ≥ 6 and k 6= zm for m ≥ 1,
where zm = pm + pm−1 + · · · + p + 2.

Theorem 3
A quotient group F/λn(F ) is not isomorphic to any of N /Nk

for n > 4. On the other hand, F/λ4(F ) is isomorphic to
N /γ4(N ).
As a consequence of Theorem 3, the infinite family of
Beauville 3-groups in Theorem 2 only coincides at the group
of order 35 with the explicit infinite family of Beauville 3-
groups in [3].
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Maximal Subgroup Containment in Direct Products
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> Purpose

Using the main theorem from [2] that characterizes containment of subgroups in a direct
product, we provide a characterization of maximal subgroups contained in a direct product.
We also provide an example of our main theorem to a maximal subgroup in A4× A4.

> History

In [2], we specify exact conditions on two subgroups U1 and U2 of the direct product of
two groups A and B that characterize when U2 ≤ U1. As applications, we calculated and
presented the subgroup lattice of Q8 × Q8, where Q8 is the quaternion group of order
8. Other examples provided in Dandrielle Lewis’s dissertation include groups that are
supersolvable, even nilpotent, which made order of subgroup sufficient for determining
maximality of one subgroup in another.

The article [4] tackled finding the maximal subgroups of a direct product, but to apply
the ideas of [2] to get the subgroup lattice of a non-supersolvable group we want a
characterization of the maximal subgroups of a subgroup of a direct product. That is what
the maximal subgroup containment characterization accomplishes.

> Goursat’s Theorem

Theorem 1 [1]
Let A and B be groups. Then there exists a bijection between the set of all subgroups of

A× B and the set of all triples
(

I
J
,

L
K

, σ

)
, where

I
J

is a section of A,
L
K

is a section

of B, and σ :
I
J
→ L

K
is an isomorphism between the sections.

> Notation

Consider the projections
πA : A× B→ A

and
πB : A× B→ B,

and let U ≤ A× B correspond to the triple
(

I
J
,

L
K

, σ

)
. It follows that:

U ∩ A / πA(U), U ∩ B / πB(U),

and
σ :

πA(U)

U ∩ A
→ πB(U)

U ∩ B
is an isomorphism.

• Now, let I = πA(U), J = U ∩ A, L = πB(U), and K = U ∩ B.

• The subgroup structure given by Goursat’s Theorem is
U = {(a, b) | a ∈ I, b ∈ L, and (aJ)σ = bK}.

> Containment Theorem

Theorem 2 [2]

Suppose U2, U1 ≤ A× B, where U1 is given by the triple
(

I1
J1

,
L1
K1

, σ1

)
and U2 is given

by the triple
(

I2
J2

,
L2
K2

, σ2

)
. Then U2 ≤ U1 if and only if:

1. I2 ≤ I1, J2 ≤ J1, L2 ≤ L1, and K2 ≤ K1

2.
(

I2J1
J1

)σ1

=
L2K1

K1

3.
(

I2∩ J1
J2

)σ2

=
L2∩ K1

K2

4.
I2J1
J1

θ1

��

σ̃1
//
L2K1

K1

θ2

��

I2
I2∩ J1

σ̃2 //
L2

L2∩ K1

> Main Theorem: Maximal Subgroup Containment Theorem

Theorem 3 [3]

Suppose Un ≤ A× B with Un corresponding to the triple
(

In
Jn

,
Ln
Kn

, σn

)
, where n = 1, 2.

Then U2 < ·U1 if and only if

1. U2 ≤ U1, and

2. If
(I.) J1× K1 ≤ U2, then I2 < · I1.

(II.) J1× K1 � U2, then either

(a) K1 ≤ U2 and consequently I2 < · I1 and L2 = L1, or

(b) J1 ≤ U2 and consequently L2 < ·L1 and I2 = I1, or

(c) J1 � U2 and K1 � U2 and consequently I2 = I1, L2 = L1, and
J1
J2

is a

chief factor of I1.

> Properties of A4× A4 and Notation

Consider the direct product A4× A4.

There are 216 subgroups of A4 × A4: the trivial subgroup and the group itself, 12 sub-
groups of order 2, 43 subgroups of order 3, 35 subgroups of order 4, 24 subgroups of
order 6, 15 subgroups of order 8, 16 subgroups of order 9, 50 subgroups of order 12, 1
subgroup of order 16, 6 subgroups of order 24, 8 subgroups of order 36, and 4 subgroups
of order 48.

Notation for subgroups of A4:
– Denote the Klein 4-group as V, and
– The four cyclic groups of order 3 as Fi =< fi >, where 1 ≤ i ≤ 4

> Example/Application of Main Theorem (Theorem 3)

Let U1 be the subgroup of order 48, in A4× A4, corresponding to the triple
(

A4
V

,
A4
V

, id
)

.

• U1 < ·A4× A4 by Theorem 3 (II.)(c).
• To determine the maximal subgroups, U2, contained in U1, we need to verify (i) and (ii)

from Theorem 3.
Verifying (i) for U2 is routine. So, let’s verify (ii).

• For U1, observe that J1 = K1 = V, and I1 = L1 = A4.

• If V ×V ≤ U2 and I2 < ·A4, then I2 = V.

So, (ii)(I.) gives one maximal subgroup that corresponds to the triple
(

V
V

,
V
V

, id
)

, which

is the direct product V ×V.
• If V ×V � U2, V ≤ U2, I2 < ·A4 and L2 = A4, then I2 = Fi and K2 = V.

So, (ii)(II.)(a) gives 4 maximal subgroups that correspond to the triples
(

Fi
1

,
A4
V

, id
)

,

which are (1×V) < ( fi, fi) >.
• Analogously, with respect to factors, (ii)(II.)(b) gives 4 maximal subgroups that corre-

spond to the triples
(

A4
V

,
Fi
1

, id
)

, which is (V × 1) < ( fi, fi) >.

• If V × V � U2, J1 = K1 = V � U2, I2 = A4, L2 = A4, and
V
J2

is an A4 chief factor, then

J2 = 1 = K2.

So, (ii)(II.)(c) gives 12 maximal subgroups that correspond to the triples
(

A4
1

,
A4
1

, τa

)
,

where τa, a ∈ A4, is the inner automorphism induced by a.
More specifically, these subgroups are diagonal subgroups of A4× A4.
In order to have set containment, a must be an even permutation.

Therefore, (ii) is satisfied, and by Theorem 3, U1 contains 21 maximal subgroups, including
1 of order 16 and 20 of order 12.
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On the dimension of the product [L2, L2, L1] in free Lie algebras

Nil Mansuroğlu

Ahi Evran University

1. Introduction

Let L be the free Lie algebra of rank r ≥ 2 over a field K on X = {x1, x2, . . . , xr}
which is a set ordered by x1 < x2 < . . . < xr. The free centre-by-metabelian Lie

algebra G on X is defined as the quotient

G = L/[L′′, L],

where L′′ is the second derived ideal of L. The second derived ideal G′′ of G is

defined to be quotient

G′′ = L′′/[L′′, L].

The free centre-by-metabelian Lie algebra G has a natural grading by degree.

We let Gn denote the degree n homogeneous component of G, that is spanned by

Lie products of degree n in the free generators of G, and write G′′n for the degree

n homogeneous component of the second derived ideal:

G′′n = G′′ ∩Gn.

We let Gq denote the fine homogeneous component of G of multidegree q for

a fixed composition q = (q1, q2, . . . , qr) of n, that is the submodule of G generated

by all Lie products of partial degree qi with respect to xi for 1 ≤ i ≤ r. Each of the

homogeneous components Gn can be written as a direct sum of fine homogeneous

components,

Gn =
⊕
q|=n

Gq.

If all non-zero parts of q are equal to 1, a fine homogeneous component Gq of

multidegree q is called multilinear. We define Kuz’min elements as Lie monomials

of the form

[[y1, y2], [y3, y4, y5, . . . , yn]]



2

for all yi ∈ X with i ∈ {1, 2, . . . , n} such that

y1 > y2, y3 > y4, y1 ≥ y3, y4 ≤ y2 ≤ y5 ≤ . . . ≤ yn

and t-elements are defined as

w(y1,y2, y3, y4; y5 . . . yn) = [[y1, y2], [y3, y4, y5, . . . , yn]]

+ [[y2, y3], [y1, y4, y5, . . . , yn]] + [[y3, y1], [y2, y4, y5, . . . , yn]]

for all yi ∈ X with i = 1, 2, . . . , n.

2. Main Results

Theorem 1. Let G be the free centre-by-metabelian Lie algebra of rank r > 1 over

a field K of characteristic other than 2. Then the dimensions of the homogeneous

components and the fine homogeneous components of the second derived algebra

G′′ are as follows:

(i) If n ≥ 5 is odd, then

dim(G′′n) =
1

2
r(n− 3)

(
n + r − 3

n− 1

)
.

Moreover, if q |= n is a composition of n in r parts such that k of the parts are

non-zero and m of the parts are 1, then

dim(G′′q) =

(
k

2

)
−m.

(ii) If n ≥ 6 is even, then

dim(G′′n) =

(
n− 1

2

)(
n + r − 3

n

)
.

Moreover, if q |= n is a composition of n in r parts such that k of the parts are

non-zero, then

dim(G′′q) =

(
k − 1

2

)
.
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Let q |= 5 be a composition of 5 in r parts such that k of the parts are non-zero

and m of the parts are 1. The homogeneous component of G′′5 is the sum of the

fine homogeneous components G′′q , namely,

G′′5 =
⊕
q|=5

G′′q .

Lemma 1. Over any field K, let G′′5 be the degree 5 homogeneous component of

the second derived ideal G′′. Then

dim[L2, L2, L1] = dim[L3, L2]− dimG′′5.

Proof. Recall that the free centre-by-metabelian Lie algebra G is the quotient

L/[L′′, L], where L′′ is the second derived ideal of L. Then G is a graded algebra,

and we denote its degree n homogeneous component by Gn. Here Gn
∼= Ln/(Ln∩

[L′′, L]). Moreover, the second derived ideal of G is the quotient G′′ = L′′/[L′′, L].

As we have known, G′′n = G′′ ∩Gn. We are interested in G5 ∩G′′.

The second derived ideal of L can be expressed as [L2, L2]⊕[L3, L2]⊕([L4, L2]+

[L3, L3])⊕ . . .. Hence, we have

[L′′, L] =[[L2, L2]⊕ [L3, L2]⊕ . . . , L1 ⊕ L2 ⊕ . . .]

=[L2, L2, L1]⊕ [L3, L2, L1]⊕ . . . .

For degree 5, we have

G′′5 =G5 ∩G′′

∼=(L5/(L5 ∩ [L′′, L]) ∩ L′′/[L′′, L]

∼=(L5 ∩ L′′)/(L5 ∩ [L′′, L]).

Since L′′ has only the subspace [L3, L2] and [L′′, L] has only the subspace [L2, L2, L1]

for degree 5, we have L5 ∩ L′′ = [L3, L2] and L5 ∩ [L′′, L] = [L2, L2, L1]. Hence,

G′′5
∼= [L3, L2]/[L2, L2, L1].
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As a result, we obtain

dimG′′5 = dim[L3, L2]− dim[L2, L2, L1]

or

dim[L2, L2, L1] = dim[L3, L2]− dimG′′5.

This completes the proof of the lemma.

2

Theorem 2. Let L be the free Lie algebra of rank r over a field K. If r ≥ 5,

then the dimension of [L2, L2, L1] over a field of characteristic 2 is strictly less

than the dimension of [L2, L2, L1] over a field of characteristic other than 2.

Proof. Let q |= 5 be a composition of 5 in r parts such that k of the parts are

non-zero and m of the parts are 1. The homogeneous component of G′′5 is the

sum of the fine homogeneous components G′′q , namely,

G′′5 =
⊕
q|=5

G′′q .

Suppose that K is the field of characteristic other than 2. According to Theorem

1, we have

dim(G′′q) =

(
k

2

)
−m.

If q is multilinear, namely, m = k,

dim(G′′q) =

(
k

2

)
− k =

1

2
k(k − 1)− k =

(
k − 1

2

)
− 1.

Suppose that CharK=2. According to Theorem 1, if q is multilinear, then

dim(G′′q) =

(
k − 1

2

)
.

If at least one of the parts of q is greater than 1, then

dim(G′′q) =

(
k

2

)
−m.
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We can show the formulae of dimensions for G′′q in the following diagram:

CharK = 2 CharK 6= 2

q multilinear
(
k−1
2

) (
k−1
2

)
− 1

q non-multilinear
(
k
2

)
−m

(
k
2

)
−m

By this diagram, it is easy to see that for q multilinear composition of 5, the

dimension of G′′q over a field of characteristic 2 is more by 1 than the dimension

of G′′q over a field of characteristic other than 2. Therefore, since the dimension

of G′′5 is the sum of the dimensions of the fine homogeneous components G′′q , the

dimension of G′′5 over a field of characteristic 2 is greater than the dimension of

G′′q over a field of characteristic other than 2.

By Lemma 1, we have

dim[L2, L2, L1] = dim[L3, L2]− dimG′′5.

Therefore, it is clear to see that the dimension of [L2, L2, L1] over a field of

characteristic 2 is strictly less than the dimension of [L2, L2, L1] over a field of

characteristic other than 2.

2
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[4] Mansuroğlu, N.; Stöhr, R., On the dimension of products of homogeneous

subspaces in free Lie algebras. Internat. J. Algebra Comput. 23 (2013), no. 1,

205–213. MR3040808
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Abstract
Let G be a transitive normal subgroup of a permutation group A of finite degree n. The factor group A/G can be consid-

ered as a certain Galois group and one would like to bound its size. One of the results is that |A/G| < n if G is primitive
unless n = 34, 54, 38, 58, or 316. This bound is sharp when n is prime. In fact, when G is primitive, |Out(G)| < n unless G is
a member of a given infinite sequence of primitive groups and n is different from the previously listed integers. Many other
results of this flavor are established not only for permutation groups but also for linear groups and Galois groups.

1 Introduction
Aschbacher and the first author showed [AG2] that if A is a finite permutation group of degree n and A′ is
its commutator subgroup, then |A : A′| ≤ 3n/3, furthermore if A is primitive, then |A : A′| ≤ n. These
results were motivated by a problem in Galois theory. For another motivation we need a definition. Let N be
a normal series for a finite group X such that every quotient inN either involves only noncentral chief factors
or is an elementary abelian group with at least one central chief factor. Define µ(N ) to be the product of the
exponents of the quotients which involve central chief factors. Let µ(X) be the minimum of the µ(N ) for all
possible choices of N . This invariant is an upper bound for the exponent of X/X ′. In [G2] it was shown that
if A is a permutation group of degree n, then µ(A) ≤ 3n/3, furthermore if A is transitive, then µ(A) ≤ n, and
if A is primitive with A′′ 6= 1, then the exponent of A/A′ is at most 2 ·n1/2. These results were also motivated
by Galois theory. We prove similar statements and obtain corresponding results in Galois theory.

Let G be a normal subgroup of a permutation group A of finite degree n. The factor group A/G is studied.
It is often assumed that G is transitive (this is very natural from the point of view of Galois groups and the
results are much weaker without this assumption). Our first result is the following.

Theorem 1.1. Let G and A be permutation groups of finite degree n with G C A. Suppose that G is primi-
tive. Then |A/G| < n unless G is an affine primitive permutation group and the pair (n,A/G) is (34,O−4 (2),
(54, Sp4(2)), (38,O−6 (2)), (38, SO−6 (2)), (38,O+

6 (2)), (38, SO+
6 (2)), (58, Sp6(2)), (316,O−8 (2)), (316, SO−8 (2)),

(316,O+
8 (2)), or (316, SO+

8 (2)). Moreover if A/G is not a section of ΓL1(q) when n = q is a prime power, then
|A/G| < n1/2 log2 n for n ≥ 214000.

The n − 1 bound in Theorem 1.1 is sharp when n is prime and G is a cyclic group of order n. For more
information about the eleven exceptions in Theorem 1.1 and for a few other examples see the paper. Note that
for every prime p there are infinitely many primes r such that the primitive permutation group G ≤ AΓL1(q)
of order np = qp = rp−1p satisfies |NSn(G)/G| = (n− 1)(p− 1)/p. It will also be clear from our proofs that
the bound n1/2 log2 n in Theorem 1.1 is asymptotically sharp apart from a constant factor at least log9 8 and at
most 1.

Our second result concerns the size of the outer automorphism group Out(G) of a primitive subgroup G of
the finite symmetric group Sn.

Theorem 1.2. Let G ≤ Sn be a primitive permutation group. Then |Out(G)| < n unless |Out(G)| =
|NSn(G)/G| ≥ n (see Theorem 1.1 for the seven exceptions) or n = q2 with q = 2e, e > 1, and
G = (C2)2e : L2(q).

Note that if G is a member of the infinite sequence of exceptions in Theorem 1.2, then |Out(G)| <
(n log2 n)/2.

Next we state an asymptotic version of Theorem 1.2. For this we need a definition. Let C be the class of
all affine primitive permutation groups G with an almost simple point-stabilizer H with the property that the
socle Soc(H) of H acts irreducibly on the socle of G and Soc(H) is isomorphic to a finite simple classical
group such that its natural module has dimension at most 6.

Theorem 1.3. Let G ≤ Sn be a primitive permutation group. Suppose that if n = q is a prime power then G
is not a subgroup of AΓL1(q). If G is not a member of the infinite sequence of examples in Theorem 1.2, then
|Out(G)| < 2 · n3/4 for n ≥ 214000. Moreover if G is not a member of C, then |Out(G)| < n1/2 log2 n for
n ≥ 214000.

As mentioned earlier, the bound n1/2 log2 n in Theorem 1.3 is asymptotically sharp apart from a constant
factor close to 1.

The proof of Theorem 1.1 requires a careful analysis of the abelian and the nonabelian composition factors
of A/G where A and G are finite groups. For this purpose for a finite group X we denote the product of the
orders of the abelian and the nonabelian composition factors of a composition series for X by a(X) and b(X)
respectively. Clearly |X| = a(X)b(X).

The next result deals with b(A/G) in the general case when G is transitive and in the more special situation
when G is primitive.

Theorem 1.4. LetA andG be permutation groups withG C A ≤ Sn. IfG is transitive, then b(A/G) ≤ nlog2 n.
If G is primitive, then b(A/G) ≤ (log2 n)2 log2 log2 n.

In order to give a sharp bound for a(A/G) when G is a primitive permutation group, interestingly, it is
first necessary to bound a(A) (for A primitive). In 1982 Pálfy [Pá] and Wolf [W] independently showed
that |A| ≤ 24−1/3n1+c1 for a solvable primitive permutation group A of degree n where c1 is the constant
log9(48 · 241/3) which is close to 2.24399. Equality occurs infinitely often. In fact a(A) ≤ 24−1/3n1+c1 holds
[Py] for any primitive permutation group A of degree n. Using the classification theorem of finite simple
groups we extend these results to the following, where for a finite group X and a prime p we denote the
product of the orders of the p-solvable composition factors of X by ap(X).

Theorem 1.5. Let G ≤ Sn be primitive, let p be a prime divisor of n and let c1 be as before. Then
ap(G)|Out(G)| ≤ 24−1/3n1+c1.

Wolf [W] also showed that if G is a finite nilpotent group acting faithfully and completely reducibly on a
finite vector space V , then |G| ≤ |V |c2/2 where c2 is the constant log9 32 close to 1.57732. In order to general-
ize this result we set c(X) to be the product of the orders of the central chief factors in a chief series of a finite
group X . In particular we have c(X) = |X| for a nilpotent group X . The following theorem extends Wolf’s
result.

Theorem 1.6. Let G ≤ Sn be a primitive permutation group. Then c(G) ≤ nc2/2 where c2 is as above.

Some technical, module theoretic results enable us to show that if G C A ≤ Sn are transitive permutation
groups, then a(A/G) ≤ 6n/4. In fact, we show that a(A/G) ≤ 4n/

√
log2 n whenever n ≥ 2. This together with

Theorem 1.4 give the following.

Theorem 1.7. We have |A : G| ≤ 4n/
√

log2 n · nlog2 n whenever G and A are transitive permutation groups
with G C A ≤ Sn and n ≥ 2.

For an exponential bound in Theorem 1.7 we can have 168(n−1)/7. See [Py, Proposition 4.3] for examples of
transitive p-groups (p a prime) showing that Theorem 1.7 is essentially the best one could hope for apart from
the constant 4. It is also worth mentioning that a cn/

√
log2 n type bound fails in case we relax the condition

G C A to G CC A. Indeed, if A is a Sylow 2-subgroup of Sn for n a power of 2 and G is a regular elementary
abelian subgroup inside A, then |A : G| = 2n/2n. The next result shows that an exponential bound in n holds
in general for the index of a transitive subnormal subgroup of a permutation group of degree n.

Theorem 1.8. Let G CC A ≤ Sn. If G is transitive, then |A : G| ≤ 5n−1.

The proof of Theorem 1.8 avoids the use of the classification theorem for finite simple groups. Using the
classification it is possible to replace the 5n−1 bound with 3n−1. It would be interesting to know whether
|A : G| ≤ 2n holds for transitive permutation groups G and A with G CC A ≤ Sn.

We note that the paper contains sharp bounds for |A : G|, b(A/G) and a(A/G) in case A is a primitive
permutation group of degree n and G is a transitive normal subgroup of A. These are nlog2 n in the first two
cases, and it is 24−1/3nc1 in the third case.

There are Galois versions of some of the above results and by [GS] these are equivalent to the corresponding
group theoretic theorems.

Various corresponding results are also obtained for linear groups.

2 Methods
Various consequences of the Classification Theorem of Finite Simple Groups are used together with the
Aschbacher-O’Nan-Scott Theorem. The core of the paper concerns actions of finite groups on finite vector
spaces.

3 Forthcoming Research
In the spirit of Theorem 1.8 it may be possible in Theorem 1.1 to relax the condition G C A to G CC A and
obtain corresponding bounds for |A : G|. As mentioned above, it would also be interesting to know whether
|A : G| ≤ 2n holds for transitive permutation groups G and A with G CC A ≤ Sn.
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CONJUGACY CLASSES CONTAINED IN NORMAL SUBGROUPS
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NOTATION: Let G be a finite group. Recall that xG = {g−1xg| g ∈ G} is the conjugacy class of the element x of G, and we call its cardinal the
class size of x. If N EG and x ∈ N , we say that xG is the G-class of x, which is obviously contained in N .

GRAPH ASSOCIATED TO THE G-CONJUGACY CLASSES OF N , [1]

INTRODUCTION: DEFINITION OF THE GRAPH

In 1990, the graph Γ(G) associated to the sizes of the ordinary conjugacy clas-
ses of G was introduced in [4]. We study the properties of the following sub-
graph of Γ(G) regarding the G-conjugacy classes contained in N .

Definition. Let N E G. We define the graph ΓG(N) as follows: the vertices
are the non-central G-classes of N , and two vertices are joined by an edge if
and only their sizes have a common prime divisor.

The fact that the number of connected components and the diameter of Γ(G)
are bounded does not directly imply that the corresponding for ΓG(N) have to
be bounded too. Indeed, a prime dividing some G-class size does not need to
divide |N |. We show that both numbers for ΓG(N), denoted by n(ΓG(N)) and
d(ΓG(N)), are actually bounded.

Theorem A. Let G be a group and let N be a normal subgroup of G. Then
n(ΓG(N)) ≤ 2.

Theorem B. Let G be a group and let N be a normal subgroup of G.

1. If n(ΓG(N)) = 1, then d(ΓG(N)) ≤ 3.

2. If n(ΓG(N)) = 2, then each connected component is a complete graph.

Theorem C. Let G be a group and N EG. If n(ΓG(N)) = 2 then, either N is
quasi-Frobenius with abelian kernel and complement, or N = P × A where
P is a p-group and A 6 Z(G).

We obtain the structure of N when ΓG(N) has no triangles. In order to pro-
ve our result we first need to study the structure of N when ΓG(N) has few
vertices.

ΓG(N) WITH ONE, TWO OR THREE VERTICES, [2].

Theorem D. If ΓG(N) has only one vertex, then N is a p-group for some
prime p and N/(N ∩ Z(G)) is an elementary abelian p-group.

Theorem E. If ΓG(N) has two vertices and no edge, then N is a 2-group or
a Frobenius group with p-elementary abelian kernel K, and complement H ,
which is cyclic of order q, for two different primes p and q.

Theorem F. If ΓG(N) has exactly two vertices and one edge, then one of the
following possibilities holds:

1.N is a p-group for a prime p.

2.N = P × Q with P/(Z(G) ∩ P ) an elementary abelian p-group with p
an odd prime, and Q ⊆ Z(G) ∩N and Q ∼= Z2.

3.N is a Frobenius group with p-elementary abelian kernel K and comple-
ment H ∼= Zq for some distinct primes p and q.

Theorem G. If ΓG(N) has three vertices in a line, then Z(G)∩N = 1 and one
of the following cases is satisfied:

1.N is a 2-group of exponent at most 4.

2.N = P ×Q, where P and Q are elementary abelian p and q-groups.

3.N is a Frobenius group with complement isomorphic to Zq, Zq2 or Q8. In
the former case, the kernel of N is a p-group with exponent ≤ p2 and in
the two latter cases, the kernel of N is p-elementary abelian.

Theorem H. If ΓG(N) has three vertices and one edge, then N is a {p, q}-
group for two primes p and q. Furthermore, either N is a p-group, or N is a
quasi-Frobenius group with abelian kernel and complement. In this case, |N∩
Z(G)| = 1 or 2.

ΓG(N) IS EXACTLY A TRIANGLE, [2].

Theorem I. If ΓG(N) consists of exactly one triangle, then one of the following
holds:

1.N is a p-group for some prime p.

2.N = P × Q, with either P p-elementary abelian and Q q-elementary
abelian for some primes p and q, and Z(G) ∩ N = 1 or P a p-group for
a prime p 6= 3, and Q ⊆ Z(G) ∩ N , Q ∼= Z3 and P/(Z(G) ∩ P ) has
exponent p.

3.N = PQ, where P is a Sylow p-subgroup, p 6= 2 and Q is a Sylow
2-subgroup of N . In addition, P has exponent p, |Z(G) ∩ N | = 2 and
Q/(Z(G) ∩N) is 2-elementary abelian.

4. Either N is a Frobenius group with complement Zq, Zq2 or Q8 for a prime
q, or there are two primes p and q such that N/Op(N) is a Frobenius
group of order pq and Op(N) has exponent p. In this case, Z(G)∩N = 1.

5.N ∼= A5 and G = (N × K)〈x〉 for some K ≤ G and x ∈ G, with
x2 ∈ N ×K and G/K ∼= N〈x〉 ∼= S5.

ΓG(N) WITHOUT TRIANGLES, [2].

Theorem J. If ΓG(N) has no triangles, then N is a {p, q}-group and satisfies
one of these properties:

1.N is a p-group.

2.N = P ×Q with P a p-group and Q ⊆ Z(G) ∩N , Q ∼= Z2.

3.N = P ×Q with P a p-group and Q a q-group both elementary abelian
with p and q odd primes. In this case Z(G) ∩N = 1.

4.N is a quasi-Frobenius group with abelian kernel and complement and
Z(G) ∩N ∼= Z2.

5.N is a Frobenius group with complement isomorphic to Zq, Zq2 or Q8. In
the first case, the kernel of N is a p-group with exponent less or equal than
p2 and in the two latter cases, the kernel of N is p-elementary abelian.

LANDAU’S THEOREM ON CONJUGACY CLASSES FOR NORMAL
SUBGROUPS, [3].

Theorem K. Let s, n ∈ N such that s, n ≥ 1. There exists at most a fini-
te number of isomorphism classes of finite groups G which contains a normal
subgroup N such that |G : N | = n and N has exactly s non-central G-classes.
Moreover, if G and N satisfy such condition, then

|G| < n2s+1(s+1)

s−1∏
i=0

(s+1−i)2s−1−i and |N | < n2s(s+1)

s−1∏
i=0

(s+1−i)2s−1−i

Theorem L. Let N E G with |G : N | = n. Suppose that G has exactly only
one non-central G-conjugacy class. Then |G| < n(n + 1)2.

Number of groups with a normal subgroup having exactly one non-central G-class (by using
[5]) and a comparison of the bounds obtained in Theorems K and L.

|G : N | |G| ≤ 4n3 |G| ≤ n(n + 1)2 Number of groups
2 32 18 3
3 108 48 2
4 256 100 21
5 500 180 0
6 864 294 16
7 1372 448 1
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Square-free class sizes in mutually permutable products
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Abstract
Over the last years, many authors have investigated the influence of conjugacy
class sizes on the structure of finite groups. At the same time, the study of
groups factorised as product of subgroups has been object of increasing inte-
rest, specially when they are connected by certain permutability properties.

The purpose of this poster is to present new achievements which combine both
current perspectives in Finite Group Theory. A first approach to this topic can be
found either in [1] or in [6], although the literature in this framework is sparse.

Basic concepts and terminology
In the sequel, all groups considered are finite. We deal with factorised groups
whose factors are connected by certain permutability properties (see [2]). Two
subgroups A and B of a group G are called mutually permutable if A permu-
tes with every subgroup of B and B permutes with every subgroup of A.

The notation here is as follows: the set xG ..= {g−1xg : g ∈ G} is called conju-
gacy class of the element x ∈ G. We denote by |xG| the size of the conjugacy
class xG. If p is a prime, we say that x ∈ G is a ppp-regular element if its order
is not divisible by p. The remainder notation is standard in the framework of
group theory.

Introduction
The earlier starting point of our investigation can be traced in the paper of Chi-
llag and Herzog in 1990 ([3]), where several results were proved about the glo-
bal structure of a group if some arithmetical information is known about its con-
jugacy class sizes. In particular, they handled the situation when all elements of
the group have square-free conjugacy class sizes, using the classification theo-
rem of finite simple groups (CFSG).

In [4], Cossey and Wang considered conjugacy class sizes not divisible by p2,
for certain fixed prime p. Later on, this study was improved by Liu, Wang, and
Wei in [6], by replacing conditions for all conjugacy classes by those referring
only to conjugacy classes of either p-regular elements or prime power order
elements.

These authors also first analysed some preliminary results in factorised groups
which were extended, in 2012, by Ballester-Bolinches, Cossey and Li ([1]),
through products of mutually permutable subgroups.

Main results
In 2014, Qian and Wang ([7]) have gone a step further in the above study by
considering just conjugacy class sizes of p-regular elements of prime power
order (although not in factorised groups), as the following theorem shows.

Theorem 1. For a fixed prime p with (p− 1, |G|) = 1, if p2 does not divide
|xG| for any p-regular element x ∈ G of prime power order, then G is sol-
vable, p-nilpotent and the Sylow p-subgroups of G/Op(G) are elementary
abelian.

Motivated by the previous development, our first result generalises this theorem
through products of two mutually permutable subgroups. We point out that both
results apply the CFSG.

Theorem A ([5]). Let G = AB be the product of the mutually permutable
subgroups A and B and let p be a prime with (p − 1, |G|) = 1. If p2 does
not divide |xG|, for any p-regular element x ∈ A∪B of prime power order,
then G is solvable, p-nilpotent and the Sylow p-subgroups of G/Op(G) are
elementary abelian.

On the other hand, Ballester-Bolinches, Cossey and Li proved in [1] the next
result.

Theorem 2. Let G = AB be the product of the mutually permutable sub-
groups A and B and let p be a prime. Suppose that for every p-regular
element x ∈ A∪B, |xG| is not divisible by p2. Then the order of the Sylow
p-subgroups of every chief factor of G is at most p. In particular, if G is
p-solvable, we have that G is p-supersolvable.

The second assertion of the above theorem can be generalised for p-regular
elements of prime power order as follows.

Theorem B ([5]). Let G = AB be the product of the mutually permutable
subgroups A and B and let p be a prime. Suppose that for every p-regular
element x ∈ A ∪ B of prime power order, |xG| is not divisible by p2. Then
if G is p-solvable, we have that G is p-supersolvable.

Regarding the first assertion in Theorem 2, at least we know that it remains true
when considering p-regular elements of prime power order if p is the largest

prime dividing |G|, although the general case is still an open question.

If the assumptions of Theorem B hold for every prime, we get the supersolva-
bility of G and some information about the structure of the Sylow subgroups of
G/F(G).

Theorem C ([5]). Let G = AB be the product of the mutually permutable
subgroups A and B. Suppose that for every prime p and for every p-regular
element x ∈ A ∪ B of prime power order, |xG| is not divisible by p2. Then
G is supersolvable and G/F(G) has elementary abelian Sylow subgroups.

If we impose to the previous result the stronger condition that each prime po-
wer order element of the factors has square-free conjugacy class size, then we
obtain some additional information about the derived subgroup of G.

Theorem D ([5]). Let G = AB be the product of the mutually permuta-
ble subgroups A and B. If every prime power order element x ∈ A ∪ B
has square-free conjugacy class size, then G is supersolvable, G/F(G) has
elementary abelian Sylow subgroups and G′ is abelian.

Finally, imposing the hypotheses of Theorem C to all p-regular elements of the
factors (not only to those of prime power order), we can bound the orders of the
Sylow subgroups of G/F(G).

Theorem E ([5]). Let G = AB be the product of the mutually permutable
subgroups A and B. If for every prime p and for every p-regular element
x ∈ A∪B, |xG| is not divisible by p2, then G is supersolvable and G/F(G)
has elementary abelian Sylow p-subgroups of order at most p2, for each
prime divisor p of |G|.

It is not difficult to find examples which show that the stronger conditions of
the previous two results are necessary in contrast to those in Theorem C. We
include in [5] some examples that illustrate the scope of the results presented in
this poster.
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Abstract
We extend to the q−tensor square G ⊗q G of a group G, q a non- negative integer,

some structural results found in [2] concerning the non-abelian tensor square G ⊗ G
(q = 0). The results are applied to the computation of G⊗qG for G a finitely generated
nilpotent group. We also generalise to all q ≥ 0 results from [1] regarding the minimal
number of generators of the non-abelian tensor square G⊗G when G is a n−generator
nilpotent group of class 2. Finally, we determine the q−tensor square of Nn,2, the free
n−generator nilpotent group of class 2, for all q ≥ 0.

Introduction

Let G and Gϕ be groups, isomorphic via ϕ : g 7→ gϕ, for all g ∈ G, and let
ν(G) be the group

ν(G) :=
〈
G ∪Gϕ | [g, hϕ]k = [gk, (hk)ϕ] = [g, hϕ]k

ϕ

, ∀g, h, k ∈ G
〉
.

Then the subgroup Υ(G) = [G,Gϕ] ≤ ν(G) is isomorphic to the non-abelian
tensor square G⊗G; we write [g, hϕ] for g ⊗ h, ∀g, h ∈ G.
Now, if q ≥ 1 then let Ĝ = {k̂ | k ∈ G} be a set of symbols, one for each

element of G (for q = 0 set Ĝ = ∅). Let F (Ĝ) be the free group over Ĝ. As
G,Gϕ are embedded into ν(G), we identify their elements by their respec-
tive images in the free product ν(G)∗F (Ĝ). Let J denote the normal closure
in ν(G) ∗ F (Ĝ) of the following elements, for all k̂, k̂1 ∈ Ĝ and g, h ∈ G :

g−1 k̂ g (k̂g)−1; (1)

(hϕ)−1 k̂ hϕ (k̂h)−1; (2)
(k̂)−1[g, hϕ] k̂ [gk

q

, (hk
q

)ϕ]−1; (3)

(k̂)−1 k̂k1 (k̂1)
−1(

q−1∏
i=1

[k, (k−i1 )ϕ]k
q−1−i

)−1; (4)

[k̂, k̂1] [kq, (kq1)ϕ]−1; (5)

[̂g, h] [g, hϕ]−q. (6)

Define νq(G) := (ν(G) ∗ F (Ĝ))/J

For q = 0 the set of all relations (1) to (6) is empty; hence, ν0(G) ∼= ν(G).

Some Relevant Sections of νq(G)

1.G and Gϕ are embedded into νq(G), for all q ≥ 0

2. Set T := [G,Gϕ] and G := 〈Ĝ〉.
3. Υq(G) := TG E νq(G) and νq(G) = Gϕ · (G · Υq(G))

4. Υq(G) ∼= G⊗q G, for all q ≥ 0 ([6] and [5])
(This sets out a “hat-commutator” approach to the q-tensor square).

5.G∧qG ∼= Υq(G)/∆q(G), where ∆q(G) = 〈[g, gϕ] | g ∈ G〉.
6. Let ρ′ : Υq(G)→ G be induced by [g, hϕ] 7→ [g, h], k̂ 7→ kq.
⇒ Ker(ρ′)/∆q(G) ∼= H2(G,Zq).

Structural Results and Computations

[5, Thm 3.1] Let d = gcd(q, n). Then

C∞ ⊗q C∞ ∼= C∞ × Cq,

Cn ⊗q Cn ∼=


Cn × Cd, if d is odd,

Cn × Cd, if d is even and either 4|n or 4|q;
C2n × Cd/2, otherwise.

[[5, Cor. 2.16] Let G = N ×H, N = N/N ′N q and H = H/H ′Hq.

1. νq(G) = 〈N,Nϕ, N̂ 〉 × [N,Hϕ][H,Nϕ]× 〈H,Hϕ, Ĥ〉;
2. 〈H,Hϕ, Ĥ〉 ∼= νq(H); 〈N,Nϕ, N̂ 〉 ∼= νq(N).

3. Υq(G) = Υq(N)× [N,Hϕ][H,Nϕ]× Υq(H);

4. [N,Hϕ] ∼= N ⊗Zq H
∼= [H,Nϕ].

[7, Cor. 2.2] Let G be a group and g, h ∈ G. Then

1. [G′, Gϕ] = [G,G′ϕ];

2. [G′, Z(G)ϕ] = 1;

3. If gG′ = hG′ then [g, gϕ] = [h, hϕ];

4. If o′(x) denotes the order of a coset xG′ ∈ G/G′, then [g, hϕ][h, gϕ] has
order dividing the gcd(q, o′(g), o′(h));

5. The order of [h, hϕ] divides the gcd(q, o′(h)2, 2o′(h)).

Next theorem generalises, to all q ≥ 0, Proposition 2.2 in [2].

[7, Thm 2.8] Let G be a group and assume that Gab is f.g.

1. If q ≥ 1 and q is odd, then Υq(G) ∼= ∆q(Gab)× (G ∧q G);

2. For q = 0 or q ≥ 2 and q even, if r2(G
ab) = 0 or if G′ has a complement

in G, then also Υq(G) ∼= ∆q(Gab)× (G ∧q G);

3. For q ≥ 2 and q even, if r2(G
ab) = 0, then ∆q(G) is a homocyclic abelian

group of exponent q, of rank
(
t+1

2

)
;

4. If Gab is free abelian of rank t, then the conclusion of the previous item
holds for all q ≥ 1, while ∆q(G) is free abelian of rank

(
t+1

2

)
if q = 0.

[7, Cor. 2.10, 2.11] Let Fn be the free group of rank n and Nn,c =

Fn/γc+1(Fn). Then, for q ≥ 1, we have

(i) Fn ⊗q Fn ∼= C
(n+1

2 )
q × (Fn)

′(Fn)
q;

(ii) Nn,c ⊗q Nn,c
∼= C

(n+1
2 )

q × (Fn)′(Fn)q

γc+1(Fn)qγc+2(Fn);

If q = 0 then

(iii) ([4, Proposition 6]) Fn ⊗ Fn ∼= C
(n+1

2 )
∞ × (Fn)

′.

(iv) ([3, Corollary 1.7]) Nn,c ⊗Nn,c
∼= C

(n+1
2 )

∞ × (Nn,c+1)
′.

[7, Thm 3.2] Let G be a nilpotent group of class 2 with d(G) = n.

(i) ([1, Theorem 3.1]) d([G,Gϕ]) ≤ n(n2+3n−1)
3 ;

(ii) d(G⊗q G) ≤ n(n2+3n+2)
3 , for all q ≥ 0;

(iii) If G has finite exponent and gcd(q, exp(G)) = 1, then d(G⊗q G) ≤ n2.

[7, Prop. 3.3] Let Nn,2 = Fn/γ3(Fn) be the free nilpotent group of rank
n > 1 and class 2. Then,

(i) ([1, Theorem 3.2]) Nn,2 ⊗Nn,2 is free abelian of rank 1
3n(n2 + 3n − 1).

More precisely,

Nn,2 ⊗Nn,2
∼= ∆(F ab

n )×H2(Nn,2,Z)×N ′n,2.

(ii)
Nn,2 ⊗q Nn,2

∼= (Cq)
((n+1

2 )+Mn(3)) ×N ′n,2N
q
n,2,

where Mn(3) = 1
3(n

3 − n) is the q−rank of γ3(Nn,2)/γ3(Nn,2)
qγ4(Nn,2),

according to the Witt’s formula. Consequently, for q > 1,

d(Nn,2 ⊗q Nn,2) =
1

3
(n3 + 3n2 + 2n).

REFERENCES

[1] Bacon, M., On the non-abelian Tensor Square of a Nilpotent Group of Class Two, Glasgow Math. J., 3 (1994), 291–295.

[2] Blyth, R. D., Fumagalli, F., Morigi, M., Some structural results on the non- abelian tensor square of groups, J. Group Theory, 13, No.1 (2010), 83–94.

[3] Blyth, R. D., Moravec, P., Morse, R. F., On the nonabelian tensor squares of free nilpotent groups of finite rank. In Computational Group Theory and the Theory of Groups,
Contemporary Mathematics 470 (American Mathematical Society, 2008), pp. 27–44.

[4] Brown, R., Johnson, D. L., Robertson, E. F., Some computations of non-abelian tensor products of groups, J. Algebra bf 111 (1987), 177–202.

[5] Bueno, T. P. and Rocco, N. R., On the q-tensor square of a group, J. Group Theory, 14 (2011), 785–805.

[6] Ellis, G., Tensor Product and q-crossed Modules, J. London Math. Soc., 2 (51) No.2 (1995), 243–258.

[7] Rocco, N. R. and Rodrigues, E. C. P., The q-tensor square of finitely generated nilpotent groups, q ≥ 0, preprint (2016), 12 pp. Available at http://arxiv.org/abs/1603. 05424



NEIGHBORHOOD RADIUS ESTIMATION
FOR ARNOLDS MINIVERSAL DEFORMATIONS

OF COMPLEX AND p-ADIC MATRICES
Mohammed A. Salim

Department of Mathematical Sciences
United Arab Emirates University, U.A.E.

Abstract

V.I. Arnold [1] constructed a miniversal deformation of a given square
complex matrix A, i.e., a simple normal form to which all complex matrices
B in a neighborhood U of A can be reduced by similarity transformations
that smoothly depend on the entries of B.
D.M. Galin [2] constructed a miniversal deformation of square real
matrices.

I We calculate the radius of the neighborhood U, which is important for
applications.

I A.A. Mailybaev [3] constructed a reducing similarity transformation in
the form of Taylor series; we construct this transformation by another
method.

I We extend Arnold’s normal form to matrices over the field Qp of p-adic
numbers and the field K((T )) of Laurent series over a field K.

Motivation

The reduction of a complex matrix A to its Jordan form is an unstable
operation: both the Jordan form and a reduction transformation depend
discontinuously on the entries of the original matrix. V.I. Arnold [1]
supposed without restriction that A is a Jordan canonical matrix and have
reduced all matrices B in a neighborhood U of A to the form Barn by a
smooth similarity transformation that acts identically on A. Many
applications of miniversal deformations are based on the fact that the
spectrum of B ∈ U and Barn coincide but Barn has a simple form.

Example: Arnold’s miniversal deformation of J5(λ)⊕ J3(λ)⊕ J3(µ)

Given the Jordan matrix J := J5(λ)⊕ J3(λ)⊕ J3(µ) (λ 6= µ).
All complex matrices J + X that are sufficiently close to J can be
simultaneously reduced by some transformation

J + X 7→ S(X )−1(J + X )S(X ),
S(X ) is nonsingular and

analytic at zero, S(0) = In
to the form

λ 1
λ 1

λ 1 0
λ 1

∗ ∗ ∗ ∗ λ + ∗ ∗ ∗ ∗
∗ λ 1
∗ λ 1 0
∗ ∗ ∗ λ + ∗

µ 1
0 0 µ 1

∗ ∗ µ + ∗
in which the stars of D represent elements that depend analytically on the
entries of X .

Frobenius canonical matrix

I A Frobenius canonical block is a matrix

Φm(p) :=


0 1 0

. . . . . .
0 0 1
−cm . . . −c2 −c1

 (m-by-m)

whose characteristic polynomial xm + c1xm−1 + · · ·+ cm ∈ F[x] is an
integer power of a polynomial p(x) that is irreducible over F.

I A Frobenius canonical matrix for similarity is a direct sum of Frobenius
blocks:

Φ :=
t⊕

i=1

(
Φmi1(pi)⊕ Φmi2(pi)⊕ · · · ⊕ Φmiki

(pi)
)

(1)

we suppose that mi1 ≥ · · · ≥ miki . (Each square matrix over an
arbitrary field is similar to a matrix of the form Φ, which is uniquely
determined, up to permutation of direct summands.)

Theorem 1

Let F be one of the fields: C, R, the field Qp of p-adic numbers, or the
field K((T )) of Laurent series over a field K. Let Φ be the n × n
Frobenius canonical matrix (1) over F. Then there exists a neighborhood
U ⊂ Fn×n of 0n such that all matrices Φ + X with X ∈ U can be
simultaneously reduced by some transformation

Φ + X 7→ S(X )−1(J + X )S(X ),
S(X ) is nonsingular and
continuous, S(0) = In

(2 )

to the form Φ +D, in which

D :=
t⊕

i=1


0↓mi1

0↓ . . . 0↓

0← 0↓mi2
. . . ...

... . . . . . . 0↓

0← . . . 0← 0↓miki

 , (3 )

0↓ :=

[
0
∗ · · · ∗

]
, 0← :=

[
∗
... 0
∗

]
,

and 0↓m denotes the matrix 0↓ of size m ×m. The stars of D represent
elements that depend continuously on the entries of X .

Theorem 2

- Denote by D(F) the vector space of all matrices obtained from D in (3)
by replacing its stars with elements of F.
- For each n × n matrix unit Eij , we fix an n × n matrix Fij such that

Eij + FT
ij A− AFij ∈ D(F).

Then the neighborhood U can be taken as follows:

U :=

{
X ∈ Fn×n

∣∣∣∣ ‖X‖ < 1

48
√

n(a + 1)f 2

}
(4 )

in which

a := ‖A‖, f := max
{ ∑

i ,j

‖Fij‖, 1
3

}
,

‖M‖ :=
√∑

|mij|2 for all M = [mij] ∈ Fn×n.

Theorem 3

For each X ∈ U from (4), construct a sequence

M1 := X , M2, M3, . . .

of n × n matrices as follows: if Mk = [m(k)
ij ] has been constructed, then

Mk+1 := −A + (In − Ck)−1(A + Mk)(In − Ck),

where
Ck :=

∑
i ,j

m(k)
ij Fij.

Then the matrix function S(X ) in (2) can be taken as the infinite product

S(X ) := (In − C1)(In − C2)(In − C3) · · ·
and for each X ∈ U

‖S(X )− In‖ < −1 + (1 + 1/2)(1 + 1/4)(1 + 1/8) · · ·
‖D(X )‖ ≤ 1/(4f ).
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Introduction

Definition. Let G be a group. A subgroup H of G is
called semipermutable in G if HK is a subgroup of G, for
every subgroup K of G such that π(H) ∩ π(K) = ∅.
Definition. Let G be a group. A subgroup H of G is
called S-semipermutable in G if for every prime number
p /∈ π(H), HP is a subgroup of G for every Sylow p-
subgroup P of G.

Proposition. Let G be a group and let H and K be sub-
groups of G such that H ≤ K.

• If H is semipermutable in G, then H is semiper-
mutable in K.

• If H is S-semipermutable in G, then H is S-
semipermutable in K.

The property of being (S)-semipermutable is not closed
by subgroups and homomorphic images, as we can see in
the following examples.

1. In S4 any subgroup of order 6 is semipermutable.
Let X be one of them, then X ∩A4 is not semiper-
mutable in A4.

2. Let G = A4 ×C3, let x be an element of order 2 in
A4 and let X = 〈x〉 × C3. H is semipermutable in
G but X/C3 is not semipermutable G/C3.

In a locally finite group G, semipermutability and S-
semipermutability can be controlled by the behaviour of
the cyclic subgroups of G, as the following lemmas show.

Lemma 1. Let G be a locally finite group. Every sub-
group of G is semipermutable in G if and only if for every
prime numbers p and q, with p 6= q, and for every p-
element x and q-element y of G, 〈x〉〈y〉 is a subgroup of
G.

Lemma 2. Let G be a locally finite group. Every sub-
group of G is S-semipermutable in G if and only if for
every prime numbers p and q, with p 6= q, and for every
p-element x of G and Sylow q-subgroup Q of G, 〈x〉Q is
a subgroup of G.

Semipermutable case

The following two lemmas allow us to
prove the main theorem on semipermut-
able case.

Lemma 3. Let G be a locally finite
group with infinite rank whose sub-
groups of infinite rank are semiper-
mutable. If G has a r-subgroup S with
infinite rank and a p-element x, where
p and r are different prime numbers,
then for every subgroup H of S, H〈x〉
is a subgroup of G. In particular, S〈x〉
is a {p, r} − group.

Lemma 4. Let G be a locally finite
group with infinite rank whose sub-
groups of infinite rank are semiper-
mutable. Let p, q, r be pairwise dif-
ferent prime numers and let S be a
r-subgroup of G with infinite rank.
Then, if x is a p-element and y is a
q-element of G, 〈x〉〈y〉 is a subgroup
of G.

The following lemma allows us to restrict
our attention to countable groups with in-
finite rank.

Lemma 5. Let G be a locally finite
group with infinite rank. If every
countable subgroup of G with infin-
ite rank has all subgroups semipermut-
able, then all subgroups of G are semi-
permutable.

Theorem A. Let G be a locally finite
group with infinite rank whose sub-
groups of infinite rank are semiper-
mutable. Then every subgroup of G is
semipermutable.

Sketch of the proof. Let x, y ∈ G with
o(x) = pα and o(y) = qβ , with p 6= q.
Let prove that 〈x〉〈y〉 is a subgroup of
G.

If G has min-p for every p, we can
construct the following series of normal
subgroups of G

A1 
 A2 
 . . . 
 An 
 . . .

such that
⋂
n≥1An = {1} and the rank

of Ai is infinite. Furthermore 〈x〉Ai is
semipermutable for every i ≥ 1.
There exists a positive integer j such
that for every i ≥ j, q /∈ π(Ai). So for
every i ≥ j, (〈x〉Ai)〈y〉 is a subgroup of
G. We prove that

〈x〉〈y〉 =
⋂
i≥1

〈x〉〈y〉Ai.

So 〈x〉〈y〉 is a subgroup of G.�
�

�
�

Then let suppose that there exists a
Sylow r-subgroup S of G with infinite
rank, for some prime number r.

If r 6= p, q, then by Lemma 4 〈x〉〈y〉 is
a subgroup of G.

Let suppose that r = p. We proved
that every p-element of G is contained
in a Sylow p-subgroup with infinite
rank. Then the statement follows from
Lemma 3.

S-semipermutable case

Theorem B. Let G be a locally fi-
nite group with infinite rank whose
subgroups of infinite rank are S-
semipermutable. If G has min-p for
every p, then every subgroup of G is
S-semipermutable

Proof. Let x be a p-element of G and let
Q be a Sylow q-subgroup of G, where p
and q are different prime numbers. We
want to prove that 〈x〉Q is a subgroup of
G.
By Theorem 3.5.15 of [?], G has a locally
soluble normal subgroup S of finite index
in G. Let π be a finite subset of π(S) such
that p, q /∈ (π′ ∩ π(S)). By Lemma 2.5.13
of [?], G/Oπ′(S) is a Chernikov group and
hence Oπ′(S) has infinite rank. Zaicev’s
Theorem (see [?]) guarantees that there
is an abelian subgroup B = B1 × B2 in
Oπ′(S) such that B1 and B2 have infinite
rank and both are normalized by x. Then
the q′-subgroups Bi〈x〉 has infinite rank
and therefore (Bi〈x〉)Q is a subgroup of
G.
So

〈x〉Q = B1〈x〉Q ∩B2〈x〉Q

is a subgroup of G. In particular, 〈x〉
is S-semipermutable in G and then every
subgroup of G is S-semipermutable by
Lemma 2.

Theorem B cannot be extended to arbit-
rary periodic soluble groups, which does
not satisy the minimal condition on p-
subgroups for every prime number p.

Proposition. There exists a meta-
belian group G with infinite rank
whose subgroup of infinite rank are S-
semipermutable but not every subgroup
of G is S-semipermutable

Proof. For every integer i ≥ 1, let

Si = 〈ai, bi | a3i = b2i = 1, b−1i aibi = a−1i 〉

be an isomorphic copy of the symmet-
ric group on three letters S3 and let
S = Dri≥1Si.
Let P = Dri≥1〈bi〉 and let Q = 〈a1〉 ×
〈a2〉 and consider G = PQ. Observe
that P is a 2-elementary abelian group
of infinite rank, so that G is a countable
metabelian group of infinite rank.
Let A be a subgroup of G of infinite
rank. Since G has a finite normal Sylow
q-subgroup, there are only two possib-
ilities for the set π(A): either π(A) =
{2, 3} or π(A) = {2}. In the first case,
A is trivially S-semipermutable in G.
In the second case, A permutes with
the normal Sylow q-subgroup Q. Then
every subgroup of G of infinite rank is
S-semipermutable.
By contradiction, suppose that every
subgroup of G is S-semipermutable. Let
X = 〈a1a2〉. X is S-semipermutable
and then PX is a subgroup of G. Since
X = PX ∩ Q, X is a normal subgroup
of PX but this is a contradiction since
the element

b−11 a1a2b1 = b−11 a1b1a2 = a21a2

does not belong to X.
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Intense automorphisms
Let G be a group. An automorphism α of G is intense
if for all subgroups H of G there exists g ∈ G such that
α(H) = gHg−1. Denote by Int(G) the collection of intense
automorphisms of G; then Int(G) C Aut(G).
Examples: Inner automorphisms are intense. If V is a
vector space over a prime field Fp, then the intense automor-
phisms of V are the scalar multiplications by elements of F∗p.
Equivalence relation: Let G,G′ be groups and let α, β
be intense automorphisms respectively of G and G′. The
pairs (G,α) and (G′, β) are equivalent if there exists an iso-
morphism σ : G→ G′ such that βσ = σα.

The general setting
LetG be a finite group. A lot can be said about the structure
of G once the structure of Aut(G) is known. Besides, in
some cases, very few assumptions on Aut(G) can lead to
very strong limitations to the shape of G.
Intense automorphisms are a generalization of power au-
tomorphisms and, in some sense, they resemble class-
preserving automorphisms. If G is a non-abelian p-group
then both power and class-preserving automorphisms have
order equal to a power of p, but the same need not hold for
the elements of Int(G). We will explore this last situation
extensively and see how intense automorphisms give rise to
a (surprisingly!) rich theory.

The case of p-groups
Let p be a prime number and let G be a finite p-group. Then
Int(G) = PGoCG, where PG is the unique Sylow p-subgroup
of Int(G) and CG is a cyclic group of order dividing p − 1.
The intensity of G is int(G) = #CG.
Goal: We want to understand finite p-groups G whose
group of intense automorphisms Int(G) is not itself a p-
group. In other words, we want to know when int(G) > 1.
As this can never happen for 2-groups, we will only be
working with odd primes.
Strategy: Let Tp be the collection of equivalence classes of
pairs (G,α) such thatG is a finite p-group and α is conjugate
to a non-trivial element of CG. For all c ∈ Z≥0, define

Tp[c] = { [G,α] ∈ Tp : G has class c }
and note that the collection { Tp[c] }c≥1 is a partition of Tp.

Small nilpotency classes
Let p be an odd prime. Then the following hold.
1. Tp[1] = { [G,α] : G 6= 1 abelian, α ∈ ω(F∗p) \ {1} },

where ω : F∗p → Z∗p is the Teichmüller character.
2. Tp[2] = { [ESp(n), αλ] : n ∈ Z≥1, λ ∈ F∗p \ {1} }, where

ESp(n) is extraspecial, of order p2n+1 and exponent p,
and αλ is a lift of λ-th powering on ESp(n)/Φ(ESp(n)).

Note: If G is a finite p-group of class at most 2, then int(G)
is either 1 or p−1. Moreover, both Tp[1] and Tp[2] are infinite.

Higher nilpotency classes

Let p be an odd prime. Let c ≥ 3 and let [G,α] ∈ Tp[c].
Then the following hold.
1. The order of α is equal to 2 and int(G) = 2.
2. The lower central series and p-central series of G coincide.
3. The map α induces the inversion map on G/Φ(G).
4. The group G is thin, with one of the following diagrams.

Theorem

Let p be an odd prime and let c ∈ Z>0. Then the
following hold.

1. If c ≥ 3, then Tp[c] is finite.
2. Tp[c] = ∅ ⇐⇒ p = 3 and c ≥ 5.
3. The set T3[4] has exactly one element.
4. If p > 3, then # lim←−c

Tp[c] = 1.

If lim←−c
Tp[c] = {[G(c), α(c)]}c>0, we want to determine the pro-

p-group Glim = lim←−c
G(c) and the automorphism αlim of Glim

that is induced by the automorphisms α(c).

INTENSE PROJECTIVE SYSTEM (IPS)

There is a well-defined sequence of sets
. . . −→ Tp[c + 1] πc+1−→ Tp[c] πc−→ Tp[c− 1] −→ . . . −→Tp[1]

where, for all c, the map πc is defined by πc : [G,α] 7→ [G/γc(G), α].
The sequence (γi(G))i≥1 denotes the lower central series of G and α is the map induced by α on G/γc(G).

IPS for p = 3

A maximal class example

Let k = F3[ε], where ε2 = 0, and set A3 = k + ki + kj + kij,
where i, j satisfy i2 = j2 = ε, and ji = −ij. The quaternion
algebra A3 is local, with maximal ideal m = A3i + A3j and
canonical anti-homomorphism

a = s + ti + uj + vij 7→ a = s− ti− uj− vij.
Let Gmax = {a ∈ 1 + m : aa = 1} and let the automor-
phism αmax : Gmax → Gmax be defined by
a = s + ti + uj + vij 7→ αmax(a) = s− ti− uj + vij.

Fact: T3[4] = {[Gmax, αmax ]}.

Another construction
Let J3 denote the third Janko group and let 3.J3 denote its
Schur cover. Let S be a Sylow 3-subgroup of 3.J3 and let N
be its normalizer. Let x be an element of order 2 in N and
let ιx : S → S be conjugation under x.
Fact: T3[4] = {[S, ιx]}.
Thanks to: Derek Holt and Frieder Ladisch for this char-
acterization.

IPS for p ≥ 5

A profinite example

Let p > 3 be a prime and let t ∈ Zp satisfy ( tp) = −1. Set
Ap = Zp + Zpi + Zpj + Zpij with defining relations i2 = t,
j2 = p, and ji = −ij. Then Ap is a non-commutative local
ring such that Ap/jAp

∼= Fp2. The involution · : Ap → Ap

is defined by
a = s + ti + uj + vij 7→ a = s− ti− uj− vij.

Let SL(p) = {a ∈ 1 + jAp : aa = 1} and let αp be the au-
tomorphism of SL(p) that is defined by

a = s + ti + uj + vij 7→ αp(a) = s + ti− uj− vij.

Theorem

The group SL(p) is a pro-p-group and αp is topologically
intense, i.e. for any closed subgroup H of SL(p) there
exists g ∈ SL(p) such that αp(H) = gHg−1. Moreover,
( SL(p), αp ) ∼= (Glim, αlim ).
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How many elements does it take to generate a minimally transitive permutation group?

Consider the following question: what is the smallest number f (n) we can find, such that for any transitive permutation group G of degree n, one can find an
f (n)-generated subgroup of G which is also transitive?

Definition 1 A transitive permutation group G is called minimally transitive if every proper subgroup of G is intransitive.

For a prime factorisation n =
∏
p prime p

n(p) of n, set ω(n) :=
∑
p prime n(p) and µ(n) := max {n(p) : p prime}.

In the language of Definition 5, our task is to find the best possible upper bound on d(G), in terms of n, where G is a minimally transitive group of degree n. The
question was first considered by Shepperd and Wiegold:

Theorem 2 (Shepperd; Wiegold, 1963 (CFSG)) Let G be a minimally transitive permutation group of degree n. Then d(G) ≤ ω(n).

The statement of the theorem of Shepperd and Wiegold included the hypothesis that every finite simple group can be generated by 2 elements. Of course, as
a result of the CFSG, we know that this hypothesis holds true. However, it meant that the result could not be used in general, and this led Neumann and
Vaughan-Lee to prove the following:

Theorem 3 (Neumann; Vaughan-Lee, 1977) Let G be a minimally transitive permutation group of degree n. Then d(G) ≤ log2 n.

A conjecture was then made, on the bound one should aim for:

Conjecture 4 (Pyber, 1991) Let G be a minimally transitive permutation group of degree n. Then d(G) ≤ µ(n) + 1.

The conjecture was verified by Pyber himself in the nilpotent case, and then by Lucchini in the soluble case:

Theorem 5 (Lucchini, 1996) Let G be a soluble minimally transitive permutation group of degree n. Then d(G) ≤ µ(n) + 1.

Finally, we can offer a complete solution to the problem.

Theorem 6 (T., 2015 (CFSG)) Let G be a minimally transitive permutation group of degree n. Then d(G) ≤ µ(n) + 1.

How many elements does it take to generate a
transitive permutation group?

The problem of bounding d(G), for a transitive permutation group G, in terms of its degree,
was first considered by McIver and Neumann:

Theorem 7 (McIver; Neumann, 1987) Let G be a transitive permutation group of
degree n ≥ 5. Then d(G) < n/2, except that d(G) = 4 when n = 8 and G ∼= D8 ◦D8.

However, it was long suspected that substantially tighter bounds could be proved.

Theorem 8 (Lucchini, 2000 (CFSG)) Let G be a transitive permutation group of
degree n ≥ 2. Then d(G) = O(n/

√
log2 n).

Note that the constant involved in the previous theorem was never estimated. In fact, until
2015 Neumann’s 1989 result was the best numerical bound we had for d(G) in terms of n. We
now have the following:

Theorem 9 (T., 2015 (CFSG)) Let G be a transitive permutation group of degree

n ≥ 2. Then d(G) ≤
⌊

cn√
log2 n

⌋
where c =

√
3/2 = 0.866025 . . ., apart from a finite list

of exceptions.

Theorem 10 (T., 2016 (CFSG)) Let G be a transitive permutation group of degree
n ≥ 2. Then

d(G) = O

(
n2

log |G|
√

log2 n

)
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How many elements does it take
to invariably generate a
permutation group?

Definition 11 A subset {x1, x2, . . . , xt} of a group G
is said to invariably generate G if 〈xg1

1 , x
g2
2 , . . . , x

gt
t 〉 = G

for every t-tuple (g1, g2, . . . , gt) of elements of G. The
cardinality of the smallest invariable generating set for
G is denoted by dI(G).

Several recent papers have discussed upper bounds on dI(G)
for a finite group G. Clearly dI(G) is at least d(G), but
how large is the difference dI(G) − d(G)? In general, the
answer is: arbitrarily large (see [1, Proposition 2.5]). One
can, however, consider a related question: Suppose that for
a class C of finite groups, we have an upper bound on d(G),
for G in C, in terms of some invariant of C. Does said upper
bound still hold if one replaces d by dI?

For instance, the case when C is the set of permutation

groups of degree n was considered by Detomi and Lucchini:

Theorem 12 (Detomi; Lucchini, 2014 (CFSG))
Let G be a permutation group of degree n. Then
dI(G) ≤

⌊n
2

⌋
, except that dI(G) = 2 when n = 3 and

G ∼= Sym (3).

We can now also prove the following:

Theorem 13 (T., 2015 (CFSG)) Let G be a tran-
sitive permutation group of degree n. Then dI(G) =
O(n/

√
log n).

Theorem 14 (T., 2015 (CFSG)) Let G be a prim-
itive permutation group of degree n. Then dI(G) =
O(log n/

√
log log n).
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Finite groups FC∗-groups Groups without infinite simple sections
A group G is said to be:

1. a T-group if H E K E G implies H E G ;
2. a T̄-group if every subgroup of G is a T-group;
3. locally graded if every non-trivial finitely generated subgroup of G has a non-

trivial finite homomorphic image;
4. an FC0-group if G is finite and, by induction, an FCn+1-group if G/CG (〈x〉G )

is an FCn-group for all x ∈ G ; then G is an FC∗-group if G is an FCn-group
for some n ≥ 0.

Let G be a finite group.

1. If G is a soluble T-group, then G is a T̄-group.
2. If G is a T̄-group, then G is soluble.

[Gaschütz, 1957], [Zacher, 1952])

Examples of infinite soluble T-groups that are not T̄-groups are con-
structed in [Robinson, 1964] and [Kuzennyi and Subbotin, 1989].

Let G be a soluble FC∗- group. Then the following statements are equivalent:

1. G is a T-group.
2. G is a T̄-group.

[Esteban-Romero and Vincenzi, 2016, Theorem 2.3]

1. Let G be a group without infinite simple sections. Then:

(a) G is locally graded.
(b) If G is a T̄-group, then G is metabelian.

2. Let G be a soluble group. Then G is a T̄-group ⇐⇒ every ascendant
subgroup of G is normal in G .

[de Giovanni and Vincenzi, 2000, Theorem 3.6]

Open question (see [Mazurov and Khukhro, 2014, Question 14.36]). Are non-
periodic locally graded T̄-groups soluble?

A subgroup X of a group G is said to be pseudonor-
mal [de Giovanni and Vincenzi, 2003] or transitively normal
[Kurdachenko and Subbotin, 2006] or to satisfy the subnormaliser condition
[Mysovskikh, 1999] if NG (H) ≤ NG (X ), for each subgroup H of G such that
X ≤ H ≤ NG (X ).
This is equivalent to affirming that if H ≤ L and H is subnormal in L, then H E L.

Let G be a finite group, then the following are equivalent:

1. G is a T̄-group.
2. Every subgroup of G is pseudonormal.

[Ballester-Bolinches and Esteban-Romero, 2003, Theorem A]

Let G be an FC∗-group, then the following are equivalent:

1. G is a T̄-group
2. Every subgroup of G is pronormal
3. Every subgroup of G is pseudonormal

It follows by [de Giovanni and Vincenzi, 2003, Theorem 3.1 and Corollary 3.5] and
[de Giovanni et al., 2002, Theorem 4.6] or [Romano and Vincenzi, 2011, Theorem
3.3]

A group G is a T̄-group if and only if all its subgroup are pseudonormal
[de Giovanni and Vincenzi, 2003, Theorem 3.1]

A subgroup X of a group G is said to be pronormal if X and X g are conjugate in
〈X ,X g〉, for every element g ∈ G .

Let G be a finite soluble group. Then the following are equivalent:

1. G is a T-group.
2. G is a T̄-group.
3. X is pronormal in G , ∀X ≤ G .

[Peng, 1969]

Let G be a soluble FC∗- group. Then the following are equivalent:

1. G is a T-group.
2. X is pronormal in G for all X ≤ G .

[de Giovanni and Vincenzi, 2000, Theorem 3.9]

Let G be a group without infinite simple sections. Then G is a T̄-group ⇐⇒ every
cyclic subgroup is pronormal

Examples of T̄-groups containing non pronormal subgroups were given by
[Kovács et al., 1961], and by [Kuzennyi and Subbotin, 1989].

A subgroup X of a group G is said to be weakly normal [Müller, 1966] if
X g ≤ NG (H) implies g ∈ NG (H)

Let G be a finite soluble group. Then the following are equivalent:

1. G is a T-group.
2. Every subgroup of G is weaky normal.

[Ballester-Bolinches and Esteban-Romero, 2003, Theorem A]

→

Let G be a group. Then the following are equivalent:

1. G is a T̄-group without infinite simple sections.
2. G is a localy graded group whose subgroup are weaky normal.

[Russo, 2012, Corollary 4], [Romano and Vincenzi, 2015, Theorem 2.8]

A subgroup X of a group G is said to be anH-subgroup or that it has theH-property
in G if NG (X ) ∩ X g ≤ X for all elements g of G .

Let G be a finite soluble group. Then the following are equivalent:

1. G is a T-group.
2. G is a T̄-group.
3. Every subgroup of G has the property H.

[Bianchi et al., 2000, Theorem 10]

→

Let G be a group without infinite simple sections. Then the following are equivalent:

1. G is a T̄-group.
2. Every subgroup of G has the property H.

[Vincenzi, 2016, Theorem 3.2]

A group G is said to be an NNM-group (non-normal maximal) if each non-normal
subgroup of G is contained in a non-normal maximal subgroup of G .

Let G be a finite soluble group. Then the following are equivalent:
1. G is a T-group.
2. All subgroups of G are NNM-groups.

[Kaplan, 2011b, Theorem 1]

Let G be a soluble FC∗-group. Then the following are equivalent:

1. G is a soluble T-group.
2. All subgroups of G are NNM-groups.

[Esteban-Romero and Vincenzi, 2016, Theorem 2.5]

There exist examples of T-groups, that are hyperfinite and FC-nilpotent but that
are not NNM-groups [Esteban-Romero and Vincenzi, 2016, Example 2.6].

A subgroup H of a group G is said to be a ϕ-subgroup of G if, for all K , L maximal
in H , it is the case that if K , L are conjugate in G , then K , L are conjugate in H .
A subgroup K of a group G is said to be a cr-subgroup (conjugation restricted) of
G if there are no A < K , g ∈ G such that K = AAg .

Let G be a finite soluble group. Then the following are equivalent:

1. G is a T-group.
2. Every subgroup of G has the property ϕ.
3. Every subgroup of G is a cr-subgroup.

[Kaplan, 2011a, Theorem 7]

Let G be a soluble FC∗-group. Then the following are equivalent:

1. G is a T-group.
2. Every subgroup of G has the property ϕ.
3. Every subgroup of G is a cr-subgroup.

[Kaplan and Vincenzi, 2014, Theorem 5.2]

To investigate

A subgroup H of a finite group G is called an NE-subgroup [Li, 1998] if it satisfies
NG (H) ∩ HG = H .

Let G be a finite soluble group. Then the following are equivalent:

1. G is a T-group;
2. Every subgroup of G is an NE-subgroup of G .

[Li, 2006, Theorem 3.1]

→

Let G be a group without infinite simple sections. Then the following are equivalent:

1. G is a soluble T̄-group.
2. Every subgroup of G is an NE-subgroup of G .

[Esteban-Romero and Vincenzi, in progress]
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