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Definitions

Let G be a finite group of odd order.

The symmetric genus σ(G) is the minimum genus of
any compact Riemann surface on which G acts
faithfully.

The strong symmetric genus σ0(G) is the minimum
genus of any Riemann surface on which G acts
preserving orientation.

For odd order groups, the symmetric genus and the
strong symmetric genus are the same.
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Definitions

The symmetric genus spectrum is the set of positive
integers that can be the genus of a group.

We are interested in the genus spectrum of odd order
groups.

There are 10 odd order groups with genus between 2
and 26. The genus spectrum in this range is 7, 10, 12,
19, 21, 25 and 26.

We are also interested in the density of this genus
spectrum in the positive integers.
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Definitions

Proposition 1: May & Zimmerman, 2008. Let G be a
finite group of odd order that acts on a Riemann
surface X of genus g ≥ 2. If |G| > 8(g −1), then G has the
given order and is a quotient of one of the following
four triangle groups. We call these groups LO1 to LO4.

LO1: |G| = 15(g −1) and quotient of Γ(3,3,5).

LO2: |G| = 21
2 (g −1) and quotient of Γ(3,3,7).

LO3: |G| = 9(g −1) and quotient of Γ(3,3,9).

LO4: |G| = 33
4 (g −1) and quotient of Γ(3,3,11).
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Elementary Properties

The LO1 groups are the analog of Hurwitz groups for
odd order groups. They are the largest odd order
groups that can have a given symmetric genus.

There are no finite metabelian odd order groups in
more than one of these classes of quotients.

The symmetric genus of any group in one of these
classes depends only on the order of the group.

What restrictions are there on the orders of groups in
these classes?
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Important groups

Let p ≥ 5 be a prime number.

Let H3p2 be the group with generators X , Y and A and
defining relations:

A3 = X p = Y p = 1,XY = YX ,A−1XA = Y ,A−1YA = X−1Y −1.

Therefore H3p2
∼= (Zp ×Zp)×φ Z3.

Proposition: H3p2 is a quotient of the triangle group
Γ(3,3,p).
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Background Lemmas

Lemma 1: May & Zimmerman, 2008. Let p ≥ 5 be a
prime number and let Γ= Γ(3,3,p). Then
(1) Γ/Γ′ ∼= Z3.
(2) Γ′/Γ′′ ∼= Zp ×Zp.
(3) Γ/Γ′′ ∼= H3p2.

Proposition 5: Let G be an LO1 group. Then
(1) G/G′ ∼= Z3.
(2) G′/G′′ ∼= Z5 ×Z5.
(3) G/G′′ ∼= H75.
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LO1 groups

Theorem
Let G be an LO1-group and let q be a prime, q > 5. If q
divides |G|, then q3 divides |G|

Sketch of Proof: Let G be an LO1-group. Let J be a
quotient of G of smallest order satisfying q divides |J |
and J is an LO1-group.

Let M be a minimal normal subgroup of J containing
an element of order q. So M ⊆ J ′′.
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Sketch of Proof 1

Let H = J
M . Now |H| is relatively prime to q, by the

minimality of J .

Also H is an LO1-group and M ∼= (Zq)r. Th. 2, May &
Zimmerman, 2008.

J ∼= M ×φ H , where φ : H −→ Aut(M).

Let K = Kernel(φ). First, K 6= H

J has a normal subgroup L ∼= M ×K .

Suppose that [J : L] = [H : K ] = 3.
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Sketch of Proof 2

So L = J ′ and q divides | L
L′ |.

This is a contradiction, since J is an LO1-group, and
L
L′ ∼= J ′

J ′′
∼= Z5 ×Z5.

Therefore, [H : K ] > 3 and so H
K is an LO1-group. May &

Zimmerman, 2008.

Also H
K is isomorphic to a subgroup of Aut(M) = GL(r,q)

Clearly, r 6= 1. Suppose that r = 2.

Let P be a Sylow 5-subgroup of H
K ⊆ GL(2,q).
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Sketch of Proof 3

Now P ⊆ H ′K
K ⊆ SL(2,q).

This is a contradiction, because the Sylow 5-subgroups
of SL(2,q) are cyclic.

So r ≥ 3 and the proof is complete.

This result is best possible, since (Z11)3 ×φ H75 is an
LO1-group of order 99825.

The genus spectrum of LO1 groups has density zero in
the positive integers.
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Previous Theorems

May & Zimmerman, 2008.

Theorem

Let G1 be an LO1-group that acts on the Riemann
surface X1 of genus g1 ≥ 2, with | G1 |= 15(g1 −1) (so that
the action is a genus action unless G1

∼= H75). Let
φ : X → X1 be a full covering of X1 of degree r > 1. If the
degree r is odd, then there is an LO1-group G with genus
action on the surface X.
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Previous Theorems 2

Corollary
If G is an LO1-group of order 15(g −1) and n is an odd
positive integer, then G has an LO1-extension Gn of the
form

1 → (Zn)2g → Gn → G → 1.
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LO2-groups

Proposition
Let G be an LO2-group. Then G/G′′ is isomorphic to
either G21

∼= Z7 ×φ Z3 or H147. In either case, G has a
normal subgroup M such that G/M ∼= G21.

Proposition
The groups G21 and H147 are the only LO2-groups with
σ= 1. If G is an LO2-group with |G| > 147, then
σ(G) = 1+2|G|/21 and G has odd genus. Further,
σ(G) ≡ 3 mod 4.
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LO2-groups II

Theorem
Let G be an LO1-group and let q be a prime, q > 5. If q
divides |G|, then q2 divides |G|

The genus spectrum of LO2 groups has density zero in
the positive integers.
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LO3-groups

LO3-groups are very different from the LO1, LO2 and
LO4 groups because they are quotients of the triangle
group Γ(3,3,9) and the third period is not a prime.
Nilpotent groups of this type have already been studied
Zomorrodian, 1987.

Question: Are there LO3 groups that are not 3-groups?

It is easy to find such groups in the Magma Library of
Groups. For example: SG(567, 17) is an LO3-group of
order 34 ·7.
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Simple Results

Suppose that Γ= Γ(3,3,9) and Γ= 〈x,y〉.

Let u = [y−1,x−1],v = [x,y−1],w = [y,x−1] and z = wx−1
.

Now Γ′ = 〈u,v,w,z〉 and the group Γ′ has relators

(vw)3 = (uz)3 = (uwzv)3 = 1.
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Simple Results 2

Theorem
Let Γ be the free (3,3,9) triangle group.
(1) Γ/Γ′ ∼= Z3 ×Z3.
(2) Γ′/Γ′′ ∼= Z3 ×Z3 ×Z ×Z.
(3) The actions of x and y on 〈u,v,w,z〉 are easy to
compute.

There are no finite metabelian LO3 groups that are also
LO1 groups. An LO1 group has H75 as the metabelian
quotient and it is not an LO3 group.

Gareth Jones, Coy L. May, and Jay Zimmerman ()LARGE ODD ORDER GROUPS OF FIXED SYMMETRIC GENUS April 1, 2014 18 / 34



Simple Results 2

Theorem
Let Γ be the free (3,3,9) triangle group.
(1) Γ/Γ′ ∼= Z3 ×Z3.
(2) Γ′/Γ′′ ∼= Z3 ×Z3 ×Z ×Z.
(3) The actions of x and y on 〈u,v,w,z〉 are easy to
compute.

There are no finite metabelian LO3 groups that are also
LO1 groups. An LO1 group has H75 as the metabelian
quotient and it is not an LO3 group.

Gareth Jones, Coy L. May, and Jay Zimmerman ()LARGE ODD ORDER GROUPS OF FIXED SYMMETRIC GENUS April 1, 2014 18 / 34



Finite Metabelian Quotients

Definition: Let G(m) be the free metabelian (3,3,9)
triangle group with the added relator ([y−1,x−1])m = 1.

This is equivalent to specifying that the order of u is m.

It is easy to show that this implies that all generators u,
v, w and z, of G′ have order m.
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The group G(m)

Let Γ be the free metabelian (3,3,9) triangle group.
Therefore, G(m) ∼= Γ/(Γ′)m.

Notice that if 3 does not divide m, the relation (vw)3 = 1
implies that v = w−1 and similarly u = z−1.

If 3 does not divide m, then |G| = 9m2 and G is not an
LO3 group, since o(xy) = 3.

Therefore, we will consider the groups G(3n).
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The group G(3n)

The group G(3n) has order 729n2.

Theorem
Let G be a finite metabelian LO3-group, with σ(G) ≥ 2.
Then G is a quotient of G(3n) for some integer n.

Sketch of Proof: The order of any of the commutators,
u, v, w and z in G is 3n and so G is clearly a quotient of
G(3n).
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Properties of G(3n)

Let p > 3 be a prime number. Let P be a Sylow
p-subgroup of G(3n). Since P is contained in (G(3n))′, it
is an abelian p-group of rank 2 and is normal in G(3n).

Any finite metabelian LO3-group G, with σ(G) ≥ 2 has
Sylow p-subgroups that are abelian of rank 2 or less.

Theorem
Consider the group G(3n) for some integer n.
(1) if 3 does not divide n, then Z(G(3n)) ∼= Z3, and
(2) if 3 divides n, then Z(G(3n)) ∼= Z3 ×Z3.
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Consequences

Proof: Solving a system of linear congruences in the
moduli 3 and 3n.

Theorem
Let G be a finite metabelian LO3-group, with σ(G) ≥ 2
and let p be a prime, p > 3. If p divides |G| and p2 does
not divide |G|, then 3 divides (p−1).

Corollary
Let G be a finite metabelian LO3-group, with σ(G) ≥ 2
and let p be a prime, p > 3. If p divides |G| and p ≡ 2
(mod 3), then p2 divides |G|.
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Sketch of Proof

G is a quotient of G(3n), where 3n = o(u) and p divides
n, but p2 does not. So p2 divides |G(3n)| and p3 does
not.

G ∼= G(3n)
N

Let P be the Sylow p-subgroup of N and it is normal in
G(3n).

Now |P| = p and so it is cyclic.

Gareth Jones, Coy L. May, and Jay Zimmerman ()LARGE ODD ORDER GROUPS OF FIXED SYMMETRIC GENUS April 1, 2014 24 / 34



Sketch of Proof

G is a quotient of G(3n), where 3n = o(u) and p divides
n, but p2 does not. So p2 divides |G(3n)| and p3 does
not.

G ∼= G(3n)
N

Let P be the Sylow p-subgroup of N and it is normal in
G(3n).

Now |P| = p and so it is cyclic.

Gareth Jones, Coy L. May, and Jay Zimmerman ()LARGE ODD ORDER GROUPS OF FIXED SYMMETRIC GENUS April 1, 2014 24 / 34



Sketch of Proof

G is a quotient of G(3n), where 3n = o(u) and p divides
n, but p2 does not. So p2 divides |G(3n)| and p3 does
not.

G ∼= G(3n)
N

Let P be the Sylow p-subgroup of N and it is normal in
G(3n).

Now |P| = p and so it is cyclic.

Gareth Jones, Coy L. May, and Jay Zimmerman ()LARGE ODD ORDER GROUPS OF FIXED SYMMETRIC GENUS April 1, 2014 24 / 34



Sketch of Proof

G is a quotient of G(3n), where 3n = o(u) and p divides
n, but p2 does not. So p2 divides |G(3n)| and p3 does
not.

G ∼= G(3n)
N

Let P be the Sylow p-subgroup of N and it is normal in
G(3n).

Now |P| = p and so it is cyclic.

Gareth Jones, Coy L. May, and Jay Zimmerman ()LARGE ODD ORDER GROUPS OF FIXED SYMMETRIC GENUS April 1, 2014 24 / 34



Sketch of Proof 2

Also G(3n) acts non-trivially on P, since otherwise
P ⊆ Z(G(3n)).

Since Aut(P) ∼= Zp−1, we see that 3 divides p−1. Q.E.D.

This is best possible since SG(567, 17) is an LO3-group
of order 34 ·7.
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Restrictions on LO3 groups

Theorem
Let G be a finite metabelian LO3-group, with |G|
divisible by 27. If |G| = pkm for some prime p > 3, where
gcd(p,m) = 1 and k is odd, then 3 divides (p−1).

Proof: Let P be the Sylow p-subgroup of G. Therefore,
P ⊆ G′ and P has rank 2 or less.

Now G is a quotient of G(n) by a normal subgroup N .
Let Q be the Sylow p-subgroup of G(n).

Now some power of Q∩N is a normal subgroup of G(n)
of order p.
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Restrictions on LO3 groups

Since the normal subgroup of order p is not in the
center of G(n), G(n) must act on it non-trivially.

It follows that 3 \ (p−1).

Corollary
Let G be a finite metabelian LO3-group, with |G|
divisible by 27 and let p be a prime congruent to 2 (mod
3). If |G| = pkm, where gcd(p,m) = 1, then k is even.
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Abundance of LO3 groups

Theorem
let p be a prime congruent to 1 (mod 3). Let G = G(n),
with n = pkm, where gcd(p,m) = 1 and 3 divides m.
There exist two normal subgroups N of order p so that
G/N is an LO3-group.

Proof: Let u and v be the power of the commutators
defined in G, so that they have order p.

There are two possible values of t satisfying
t3 ≡ 1 (mod p) and t is not congruent to 1 (mod p).
Notice that t +1 ≡−t2 (mod p).

Gareth Jones, Coy L. May, and Jay Zimmerman ()LARGE ODD ORDER GROUPS OF FIXED SYMMETRIC GENUS April 1, 2014 28 / 34



Abundance of LO3 groups

Theorem
let p be a prime congruent to 1 (mod 3). Let G = G(n),
with n = pkm, where gcd(p,m) = 1 and 3 divides m.
There exist two normal subgroups N of order p so that
G/N is an LO3-group.

Proof: Let u and v be the power of the commutators
defined in G, so that they have order p.

There are two possible values of t satisfying
t3 ≡ 1 (mod p) and t is not congruent to 1 (mod p).
Notice that t +1 ≡−t2 (mod p).

Gareth Jones, Coy L. May, and Jay Zimmerman ()LARGE ODD ORDER GROUPS OF FIXED SYMMETRIC GENUS April 1, 2014 28 / 34



Abundance of LO3 groups

Theorem
let p be a prime congruent to 1 (mod 3). Let G = G(n),
with n = pkm, where gcd(p,m) = 1 and 3 divides m.
There exist two normal subgroups N of order p so that
G/N is an LO3-group.

Proof: Let u and v be the power of the commutators
defined in G, so that they have order p.

There are two possible values of t satisfying
t3 ≡ 1 (mod p) and t is not congruent to 1 (mod p).
Notice that t +1 ≡−t2 (mod p).

Gareth Jones, Coy L. May, and Jay Zimmerman ()LARGE ODD ORDER GROUPS OF FIXED SYMMETRIC GENUS April 1, 2014 28 / 34



Existence of normal subgroups

Define N = 〈uv−t〉.

A simple calculation shows that N is normal in G and
that G/N is an LO3-group.

Theorem
Let G = G(n), where n = 3m, There exists a normal
subgroup N of order 9 so that G/N is an LO3-group.
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Symmetric Genus One

Theorem
Let G be an LO3-group that has genus σ(G) = 1. Then G
is either SG(81,9) or SG(243,26).

Proof: It is known that G contains an abelian normal
subgroup M of index 3 in G and rank 2.

It follows that G is a metabelian LO3-group and
G′ ⊂ M ⊂ G.

Now M is one of the four groups M1 = 〈x〉G′, M2 = 〈y〉G′,
M3 = 〈xy〉G′ or M4 = 〈x−1y〉G′.
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G′ ⊂ M ⊂ G.

Now M is one of the four groups M1 = 〈x〉G′, M2 = 〈y〉G′,
M3 = 〈xy〉G′ or M4 = 〈x−1y〉G′.
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Symmetric Genus One

In each possible case, G is a 3-group and |G| ≤ 243.

Using Magma, we know which groups of order 81 and
243 are LO3 groups of genus 1.

These are SG(81,9) or SG(243,26).
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Abundance of Metabelian LO3 groups

Theorem
Let R be a finite set of primes, p ≡ 1 (mod 3) and S be a
finite set of primes, p ≡ 2 (mod 3). For each prime p ∈ R,
let ` be a positive integer and for each prime p ∈ S, let 2k
be a positive even integer. Finally choose an integer
q ≥ 4. Then there exists a metabelian LO3-group G of
order 3q ·∏p∈R p` ·∏p∈S p2k.
Furthermore, σ(G) = 1+3q−2 ·∏p∈R p` ·∏p∈S p2k.
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General LO3 groups

Theorem
Let G be a finite LO3-group and let p be a prime
congruent to 2 (mod 3). If p divides |G|, then p2 divides
|G|.

Proof: The group G/G(n) acts non-trivially on a normal
subgroup of order p and we get a contradiction.

We believe that this is best possible.
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Possible Example

The group SG(1053,51) is an LO3 group with |G/G′| = 3,
|G′/G′′| = 13 and G′′ ∼= Z3

3 . So G/G′′ is the unique
non-abelian group of order 39, H39.

I have an irreducible three dimensional representation
of H39 over the field GF(29).

The semidirect product SG(1053,51)×φ Z3
29 should be

an LO3 group with the right properties.

Gareth Jones, Coy L. May, and Jay Zimmerman ()LARGE ODD ORDER GROUPS OF FIXED SYMMETRIC GENUS April 1, 2014 34 / 34



Possible Example

The group SG(1053,51) is an LO3 group with |G/G′| = 3,
|G′/G′′| = 13 and G′′ ∼= Z3

3 . So G/G′′ is the unique
non-abelian group of order 39, H39.

I have an irreducible three dimensional representation
of H39 over the field GF(29).

The semidirect product SG(1053,51)×φ Z3
29 should be

an LO3 group with the right properties.

Gareth Jones, Coy L. May, and Jay Zimmerman ()LARGE ODD ORDER GROUPS OF FIXED SYMMETRIC GENUS April 1, 2014 34 / 34



Possible Example

The group SG(1053,51) is an LO3 group with |G/G′| = 3,
|G′/G′′| = 13 and G′′ ∼= Z3

3 . So G/G′′ is the unique
non-abelian group of order 39, H39.

I have an irreducible three dimensional representation
of H39 over the field GF(29).

The semidirect product SG(1053,51)×φ Z3
29 should be

an LO3 group with the right properties.

Gareth Jones, Coy L. May, and Jay Zimmerman ()LARGE ODD ORDER GROUPS OF FIXED SYMMETRIC GENUS April 1, 2014 34 / 34


	History

