Commutator width of Chevalley groups

Andrei Smolensky

Ischia Group Theory 2014

Theorem (Ore'51, Ellers-Gordeev'98, Liebeck—O'Brien—Shalev—Tiep'10)
Every element of a non-abelian finite simple group is a commutator.

Theorem (Ree'64)
Every element of a connected semisimple algebraic group over an algebraically closed field is a commutator.

Question
What about linear groups over rings?

Gauss decomposition with prescribed semisimple part

Theorem (Ellers—Gordeev'94-96)
Let K be a field with more than 8 elements and G an almost simple simply connected algebraic group, defined and split over K. Then for any non-central $f \in G$ and any $h \in T$ one has $f \sim$ vhu, where $v \in U^{-}$and $u \in U^{+}$.

Gauss decomposition and unitriangular factorization

Definition

Commutative ring R is of stable rank 1 if for any $a, b \in R$ such that $a R+b R=R$ there exists $c \in R$ with $a+b c \in R^{*}$.

Theorem
For a commutative ring R of stable rank 1 and a root system Φ the elementary Chevalley group $E(\Phi, R)$ admits the following two decompositions:

$$
\begin{gathered}
E(\Phi, R)=U^{+} T U^{-} U^{+} \text {(Gauss decomposition), } \\
E(\Phi, R)=U^{+} U^{-} U^{+} U^{-} \text {(unitriangular factorization). }
\end{gathered}
$$

Gauss decomposition and unitriangular factorization

Gauss decomposition:

Unitriangular factorization:

Theorem (Vaserstein—Wheland'90)
For a ring R of stable rank 1 every element of $E(n, R)$ is a product of at most 2 commutators of elements from $G L(n, A)$.

Theorem (Arlinghaus—Vaserstein-You'95)
For a form ring (R, Λ) of Λ-stable rank 1 every element of the elementary hyperbolic unitary group $E U(2 n, R, \Lambda)$ is a product of at most 4 commutators from $E U(2 n, R, \Lambda)$ and a product of at most 3 commutators from $G U(2 n, R, \Lambda)$.

Commutator width of Chevalley groups

Theorem

For a commutative ring R of stable rank 1 and a root system Φ every element of the elementary Chevalley group $E(\Phi, R)$ is a product of at most N commutators from $E(\Phi, R)$, where

- $N=3$ in case $\Phi=\mathrm{A}_{\ell}, \mathrm{F}_{4}, \mathrm{G}_{2}$;
- $N=4$ in case $\Phi=\mathrm{B}_{\ell}, \mathrm{C}_{\ell}, \mathrm{D}_{\ell}, \mathrm{E}_{7}, \mathrm{E}_{8}$;
- $N=5$ in case $\Phi=\mathrm{E}_{6}$.

In the same setting every element of $E(\Phi, R)$ is a product of at most $N-1$ commutators from $\widetilde{G}(\Phi, R)$.

Sketch of the proof

1)

Sketch of the proof

Sketch of the proof

Sketch of the proof

4) apply all of the above to $E(\Phi, R)=U^{+} U^{-} U^{+} U^{-}$.

Commutator width: nice rings

- For $R=\mathbb{Z}[1 / p]$ one has $E(\Phi, R)=U^{+} U^{-} U^{+} U^{-} U^{+}$ (Sury-Vsemirnov), so the commutator width is the same as for rings of stable rank 1;

Commutator width: nice rings

- For $R=\mathbb{Z}[1 / p]$ one has $E(\Phi, R)=U^{+} U^{-} U^{+} U^{-} U^{+}$ (Sury—Vsemirnov), so the commutator width is the same as for rings of stable rank 1;
- For R a boolean ring one has $E(\Phi, R)=U^{+} U^{-} U^{+}$, so $w_{C}(E(\Phi, R))=2$ for $\mathrm{A}_{\ell}, \mathrm{F}_{4}, \mathrm{G}_{2},=4$ for E_{6} and $=3$ in all other cases;

Commutator width: nice rings

- For $R=\mathbb{Z}[1 / p]$ one has $E(\Phi, R)=U^{+} U^{-} U^{+} U^{-} U^{+}$ (Sury—Vsemirnov), so the commutator width is the same as for rings of stable rank 1;
- For R a boolean ring one has $E(\Phi, R)=U^{+} U^{-} U^{+}$, so $w_{C}(E(\Phi, R))=2$ for $\mathrm{A}_{\ell}, \mathrm{F}_{4}, \mathrm{G}_{2},=4$ for E_{6} and $=3$ in all other cases;
- Good estimates can be obtained for the rings of holomorphic functions on Stein manifolds (Ivarsson-Kutzschebauch).

Commutator width: not so nice rings

- $S L(2, \mathbb{Z}) \subset\left(U^{+}(3, \mathbb{Z}) U^{-}(3, \mathbb{Z})\right)^{20}$ by a result of Carter and Keller, and it follows that $S L(n \geqslant 60, \mathbb{Z})=\left(U^{+} U^{-}\right)^{3}$, therefore $w_{C}(S L(n, \mathbb{Z})) \leqslant 4$ for $n \geqslant 60$.
The same can be done for other classical groups, but with much worse bounds.

Commutator width: not so nice rings

- $S L(2, \mathbb{Z}) \subset\left(U^{+}(3, \mathbb{Z}) U^{-}(3, \mathbb{Z})\right)^{20}$ by a result of Carter and Keller, and it follows that $S L(n \geqslant 60, \mathbb{Z})=\left(U^{+} U^{-}\right)^{3}$, therefore $w_{C}(S L(n, \mathbb{Z})) \leqslant 4$ for $n \geqslant 60$.
The same can be done for other classical groups, but with much worse bounds.
- $S L(n, \mathbb{C}[t])$ does not have finite width with respect to elementary generators (van der Kallen) or commutators (Dennis-Vaserstein);

This is where my talk ends.
Thank you for your attention.

