BIAS OF GROUP GENERATORS IN THE SOLVABLE CASE

Andrea Lucchini

Università di Padova, Italy

ISCHIA GROUP THEORY 2014 April, 1st - 5th

< ∃ >

Let G be an n-generated finite group and let

$$\Phi_n(G) = \{(g_1,\ldots,g_n) \in G^n \mid \langle g_1,\ldots,g_n \rangle = G\}$$

be the set of all generating *n*-tuples of *G*.

Let G be an n-generated finite group and let

$$\Phi_n(G) = \{(g_1,\ldots,g_n) \in G^n \mid \langle g_1,\ldots,g_n \rangle = G\}$$

be the set of all generating *n*-tuples of *G*.

Let $Q_{G,n}$ be the probability distribution on *G* of the first components of *n*-tuples chosen uniformly from $\Phi_n(G)$.

EXAMPLE: G = Sym(3)

$$\Phi_{2}(G) = \begin{cases} ((1,2),(1,2,3)), & ((1,3),(1,2,3)), & ((2,3),(1,2,3)) \\ ((1,2,3),(1,2)), & ((1,2,3),(1,3)), & ((1,2,3),(2,3)) \\ ((1,2),(1,3,2)), & ((1,3),(1,3,2)), & ((2,3),(1,3,2)) \\ ((1,3,2),(1,2)), & ((1,3,2),(1,3)), & ((1,3,2),(2,3)) \\ ((1,2),(1,3)), & ((1,2),(2,3)), & ((1,3),(2,3)) \\ ((1,3),(1,2)), & ((2,3),(1,2)), & ((2,3),(1,3)) \end{cases} \\ Q_{G,2}(g) = \begin{cases} 0 & \text{if } g = 1 \\ \frac{4}{18} & \text{if } g = (i,j) \\ \frac{3}{18} & \text{if } g = (i,j,k) \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

The distribution $Q_{G,n}$ also appears as the limiting distribution of the "product replacement algorithm".

- **- -** - ► - ►

The distribution $Q_{G,n}$ also appears as the limiting distribution of the "product replacement algorithm".

The product replacement algorithm (PRA) is a practical algorithm to construct random elements of a finite group. It was designed by Leedham-Green and Soicher (1995) to generate efficiently nearly uniform group elements.

The distribution $Q_{G,n}$ also appears as the limiting distribution of the "product replacement algorithm".

The product replacement algorithm (PRA) is a practical algorithm to construct random elements of a finite group. It was designed by Leedham-Green and Soicher (1995) to generate efficiently nearly uniform group elements.

Given a generating *k*-tuple, a move to another such *k*-tuple is defined by first uniformly selecting a pair (i, j) with $1 \le i \ne j \le k$ and then applying one of the following operations with equal probability:

$$\begin{aligned} & \mathcal{R}_{i,j}^{\pm} : (g_1, \ldots, g_i, \ldots, g_k) \mapsto (g_1, \ldots, g_i \cdot g_j^{\pm 1}, \ldots, g_k), \\ & \mathcal{L}_{i,j}^{\pm} : (g_1, \ldots, g_i, \ldots, g_k) \mapsto (g_1, \ldots, g_i^{\pm 1} \cdot g_i, \ldots, g_k). \end{aligned}$$

To produce a random element in G, start with some generating k-tuple, apply the above moves several times, and finally return a random element of the generating k-tuple that was reached.

The moves in the PRA can be conveniently encoded by the PRA graph $\Gamma_k(G)$ whose vertices are the tuples in $\Phi_k(G)$, with edges corresponding to the moves $R_{i,i}^{\pm}, L_{i,i}^{\pm}$.

If *k* is large enough, then the graph $\Gamma_k(G)$ is connected.

The algorithm consists of running a nearest neighbor random walk on this graph and returning a random component.

Diaconis and Saloff-Coste (1998) proved that the random walk on $\Gamma_k(G)$ reaches an uniform distribution in a "reasonable" time.

The moves in the PRA can be conveniently encoded by the PRA graph $\Gamma_k(G)$ whose vertices are the tuples in $\Phi_k(G)$, with edges corresponding to the moves $R_{i,i}^{\pm}, L_{i,i}^{\pm}$.

If *k* is large enough, then the graph $\Gamma_k(G)$ is connected.

The algorithm consists of running a nearest neighbor random walk on this graph and returning a random component.

Diaconis and Saloff-Coste (1998) proved that the random walk on $\Gamma_k(G)$ reaches an uniform distribution in a "reasonable" time.

For the product replacement algorithm to generate "random" group elements, it is necessary that $Q_{G,k}$ be close to U_G , the uniform distribution on *G*. Even if the graph $\Gamma_k(G)$ is connected, even if the product replacement random walk mixes rapidly, the resulting distribution of the output can still be biased.

通 と く ヨ と く ヨ と

We want to estimate the bias of the distribution $Q_{G,t}$ considering the variation distance between $Q_{G,t}$ and U_G .

$$\|Q_{G,t} - U_G\|_{\mathrm{tv}} = \max_{B \subseteq G} |Q_{G,t}(B) - U_G(B)| = \frac{1}{2} \sum_{g \in G} |Q_{G,t}(g) - \frac{1}{|G|}|.$$

포 > 표

We want to estimate the bias of the distribution $Q_{G,t}$ considering the variation distance between $Q_{G,t}$ and U_G .

$$\|Q_{G,t} - U_G\|_{\mathsf{tv}} = \max_{B \subseteq G} |Q_{G,t}(B) - U_G(B)| = \frac{1}{2} \sum_{g \in G} |Q_{G,t}(g) - \frac{1}{|G|}|.$$

 $0 \leq \|Q_{G,t} - U_G\|_{tv} \leq 1 \text{ and } \|Q_{G,t} - U_G\|_{tv} = 0 \text{ if and only if } Q_{G,t} = U_G.$

▲□ → ▲ □ → ▲ □ → □ □

EXAMPLE: G = Sym(3)

$$\begin{split} \Phi_2(G) &= \begin{cases} ((1,2),(1,2,3)), & ((1,3),(1,2,3)), & ((2,3),(1,2,3)) \\ ((1,2,3),(1,2)), & ((1,2,3),(1,3)), & ((1,2,3),(2,3)) \\ ((1,2),(1,3,2)), & ((1,3),(1,3,2)), & ((2,3),(1,3,2)) \\ ((1,2),(1,3)), & ((1,2),(2,3)), & ((1,3),(2,3)) \\ ((1,3),(1,2)), & ((2,3),(1,2)), & ((2,3),(1,3)) \end{cases} \\ \mathcal{Q}_{G,2}(g) &= \begin{cases} 0 & \text{if } g = 1 \\ \frac{4}{18} & \text{if } g = (i,j) \\ \frac{3}{18} & \text{if } g = (i,j) \\ \frac{3}{18} & \text{if } g = (i,j,k) \end{cases} \\ \|\mathcal{Q}_{G,2} - \mathcal{U}_G\|_{\mathsf{tv}} &= \frac{1}{2} \sum_{g \in G} \left|\mathcal{Q}_{G,2}(g) - \frac{1}{|G|}\right| \\ &= \frac{1}{2} \left(\left|0 - \frac{1}{6}\right| + 3 \left|\frac{4}{18} - \frac{1}{6}\right| + 2 \left|\frac{3}{18} - \frac{1}{6}\right| \right) = \frac{1}{6}. \end{cases} \end{split}$$

・ロト・日本・日本・日本・日本

For certain groups, $Q_{G,t}$ is far from U_G .

æ

∢ ≣ ▶

For certain groups, $Q_{G,t}$ is far from U_G .

THEOREM (BABAI AND PAK, 2000)

Let $G = Alt(n)^{n!/8}$: if $n \ge 5$, then G is 2-generated but, for $t \ge 4$, the variation distance $\|Q_{G,t} - U_G\|_{tv}$ tends to 1 as $n \to \infty$.

同 ト イ ヨ ト イ ヨ ト -

Let *G* be a *t*-generated profinite group.

Let *G* be a *t*-generated profinite group.

 $G = \lim_{N \in \mathcal{N}} G/N$, with \mathcal{N} the set of the open normal subgroups of G.

Let *G* be a *t*-generated profinite group.

 $G = \lim_{N \in \mathcal{N}} G/N$, with \mathcal{N} the set of the open normal subgroups of G.

For every $N \in \mathcal{N}$ two probability distributions $Q_{G/N,t}$ and $U_{G/N}$ are defined on the quotient group G/N: this allows us to consider G as a measure space obtained as an inverse system of finite probability spaces in two different ways.

Let *G* be a *t*-generated profinite group.

 $G = \lim_{N \in \mathcal{N}} G/N$, with \mathcal{N} the set of the open normal subgroups of G.

For every $N \in \mathcal{N}$ two probability distributions $Q_{G/N,t}$ and $U_{G/N}$ are defined on the quotient group G/N: this allows us to consider G as a measure space obtained as an inverse system of finite probability spaces in two different ways.

One of the two measures obtained in this way is the usual normalized Haar measure μ_G . The other measure $\kappa_{G,t}$ has the property that $\kappa_{G,t}(X) = \inf_{N \in \mathcal{N}} Q_{G/N,t}(XN/N)$ for every closed subset *X* of *G*.

Let *G* be a *t*-generated profinite group.

 $G = \lim_{N \in \mathcal{N}} G/N$, with \mathcal{N} the set of the open normal subgroups of G.

For every $N \in \mathcal{N}$ two probability distributions $Q_{G/N,t}$ and $U_{G/N}$ are defined on the quotient group G/N: this allows us to consider G as a measure space obtained as an inverse system of finite probability spaces in two different ways.

One of the two measures obtained in this way is the usual normalized Haar measure μ_G . The other measure $\kappa_{G,t}$ has the property that $\kappa_{G,t}(X) = \inf_{N \in \mathcal{N}} Q_{G/N,t}(XN/N)$ for every closed subset *X* of *G*.

We estimate the bias of the measure $\kappa_{G,t}$ considering

$$\|\kappa_{G,t} - \mu_G\|_{\mathsf{tv}} = \sup_{B \in \mathcal{B}(G)} |\kappa_{G,t}(B) - \mu_G(B)|$$

where $\mathcal{B}(G)$ is the set of the measurable subsets of G.

The result of Babai and Pak implies that if *F* is the free profinite group of rank 2 and $t \ge 4$, then $\|\kappa_{F,t} - \mu_F\|_{tv} = 1$.

ANDREA LUCCHINI BIAS OF GROUP GENERATORS

The result of Babai and Pak implies that if *F* is the free profinite group of rank 2 and $t \ge 4$, then $\|\kappa_{F,t} - \mu_F\|_{tv} = 1$.

Pak proposed the following open problem: can one exhibit the bias for a sequence of finite solvable groups?

In other words can we produce a sequence (B_n, H_n) where H_n is a *t*-generated finite solvable group and B_n is a subset of H_n , such that $|B_n|/|H_n| \rightarrow 1$ and $|Q_{H_n,t}(B_n)| \rightarrow 0$ as $n \rightarrow \infty$?

The result of Babai and Pak implies that if *F* is the free profinite group of rank 2 and $t \ge 4$, then $\|\kappa_{F,t} - \mu_F\|_{tv} = 1$.

Pak proposed the following open problem: can one exhibit the bias for a sequence of finite solvable groups?

In other words can we produce a sequence (B_n, H_n) where H_n is a *t*-generated finite solvable group and B_n is a subset of H_n , such that $|B_n|/|H_n| \rightarrow 1$ and $|Q_{H_n,t}(B_n)| \rightarrow 0$ as $n \rightarrow \infty$?

Equivalently does there exist a *t*-generated prosolvable group *G* with $\|\kappa_{G,t} - \mu_G\|_{tv} = 1$?

It is not difficult to give an affirmative answer in the particular case when t = d(G).

If $G = \hat{\mathbb{Z}}$, then d(G) = 1 but the probability of generating G with 1 element is 0.

It is a little bit more complicate to produce an example with $d(G) \neq 1$.

It is not difficult to give an affirmative answer in the particular case when t = d(G).

If $G = \hat{\mathbb{Z}}$, then d(G) = 1 but the probability of generating *G* with 1 element is 0.

It is a little bit more complicate to produce an example with $d(G) \neq 1$.

THEOREM (E. CRESTANI, A. L. 2013)

There exists a 2-generated metabelian profinite group G with the property that

$$\mu_G(\{x \in G \mid \langle x, y \rangle = G \text{ for some } y \in G\}) = 0.$$

In particular $\|\kappa_{G,2} - \mu_G\|_{tv} = 1$.

SKETCH OF THE PROOF.

Let $\{p_n\}_{n \in \mathbb{N}}$ be the sequence of the odd primes in increasing order and let $A = \{1, y_1, y_2, y_3\}$ be an elementary abelian group of order 4.

 $H_m = (\langle x_1 \rangle \times \langle x_2 \rangle \times \langle x_3 \rangle) \rtimes A$

where $\langle x_1 \rangle, \langle x_2 \rangle, \langle x_3 \rangle$ are cyclic groups of order $p_1 \cdots p_m$ and

$$x_i^{y_i} = x_i^{-1}$$
 if $i \neq j$ and $[x_i, y_i] = 1$ otherwise.

 $(x_1^{n_1}, x_2^{n_2}, x_3^{n_3})y_j$ belongs to a generating pair $\iff (n_j, p_1 \cdots p_m) = 1$.

Let π_m be the probability that an element of H_m appears in a generating pair:

$$\pi_m = \frac{3\left(\prod_{1 \le i \le m} (p_i - 1)p_i^2\right)}{4\left(\prod_{1 \le i \le m} p_i^3\right)} = \frac{3}{4}\left(\prod_{1 \le i \le m} \left(1 - \frac{1}{p_i}\right)\right)$$

(4回) (4回) (日)

A more important and intriguing question is whether we can find a finitely generated prosolvable group *G* with the property that $\|\kappa_{G,t} - \mu_G\|_{tv} = 1$ for some integer *t* significatively larger than d(G).

A more important and intriguing question is whether we can find a finitely generated prosolvable group *G* with the property that $\|\kappa_{G,t} - \mu_G\|_{tv} = 1$ for some integer *t* significatively larger than d(G).

If *G* is a *t*-generated profinite group then $\|\kappa_{G,t} - \mu_G\|_{\text{tv}} \le 1 - P_G(t)$ being $P_G(t)$ the probability that *t* randomly chosen elements in *G* generate *G*.

₩

We can have $\|\kappa_{G,t} - \mu_G\|_{tv} = 1$ only if $P_G(t) = 0$.

A more important and intriguing question is whether we can find a finitely generated prosolvable group *G* with the property that $\|\kappa_{G,t} - \mu_G\|_{tv} = 1$ for some integer *t* significatively larger than d(G).

If *G* is a *t*-generated profinite group then $\|\kappa_{G,t} - \mu_G\|_{tv} \le 1 - P_G(t)$ being $P_G(t)$ the probability that *t* randomly chosen elements in *G* generate *G*.

 \Downarrow We can have $\|\kappa_{G,t} - \mu_G\|_{tv} = 1$ only if $P_G(t) = 0$.

If we consider arbitrary profinite groups, this does not represent a serious obstacle: for example if *G* is the free profinite group or rank $d \ge 2$ then $P_G(t) = 0$ for every $t \ge d$.

The situation is different in the case of finitely generated prosolvable groups: $P_G(t) > 0$ whenever *G* is a finitely generated prosolvable group and $t \ge c(d(G) - 1) + 1$, with $c \le 3.243$, the Pàlfy-Wolf constant.

So if *G* is a *t*-generated prosolvable group and $\|\kappa_{G,t} - \mu_G\|_{tv} = 1$, then the difference t - d(G) cannot be arbitrarily large.

However we can construct examples of prosolvable *t*-generated groups *G* with $\|\kappa_{G,t} - \mu_G\|_{tv} = 1$ and where the difference t - d(G) tends to infinity as $d(G) \to \infty$.

However we can construct examples of prosolvable *t*-generated groups *G* with $\|\kappa_{G,t} - \mu_G\|_{tv} = 1$ and where the difference t - d(G) tends to infinity as $d(G) \rightarrow \infty$.

THEOREM (E. CRESTANI, A. L. 2013)

Let $d \in \mathbb{N}$ with $d \ge 3$. There exists a finitely generated prosolvable group G such that d(G) = d and $\|\kappa_{G,d(G)+k} - \mu_G\|_{tv} = 1$ for every k such that $2k \le d(G) - 3$.

m+1 times

æ

$$T_m \leq \underbrace{\operatorname{Sym}(4) \wr \cdots \wr \operatorname{Sym}(4)}_{m+1 \text{ times}}$$

• $V = \operatorname{soc}(T_m)$ is an absolutely irreducible T_m -modulo of order $q = 4^{4^m}$ and has a complement X_m in T_m .

• $T_m \leq \operatorname{Sym}(4) \wr T_{m-1}$ and $V \cong (C_2 \times C_2)^{4^m} \leq (\operatorname{Sym}(4))^{4^m}$.

$$T_m \leq \underbrace{\operatorname{Sym}(4) \wr \cdots \wr \operatorname{Sym}(4)}_{m+1 \text{ times}}$$

• $V = \operatorname{soc}(T_m)$ is an absolutely irreducible T_m -modulo of order $q = 4^{4^m}$ and has a complement X_m in T_m .

• $T_m \leq \operatorname{Sym}(4) \wr T_{m-1}$ and $V \cong (C_2 \times C_2)^{4^m} \leq (\operatorname{Sym}(4))^{4^m}$.

•
$$X_m \leq GL(2,2) \wr T_{m-1}$$
.

$$T_m \leq \underbrace{\operatorname{Sym}(4) \wr \cdots \wr \operatorname{Sym}(4)}_{m+1 \text{ times}}$$

• $V = \operatorname{soc}(T_m)$ is an absolutely irreducible T_m -modulo of order $q = 4^{4^m}$ and has a complement X_m in T_m .

•
$$T_m \leq \operatorname{Sym}(4) \wr T_{m-1}$$
 and $V \cong (C_2 \times C_2)^{4^m} \leq (\operatorname{Sym}(4))^{4^m}$.

•
$$X_m \leq \operatorname{GL}(2,2) \wr T_{m-1}$$
.

Roughly speaking, T_m is as large as possible compatibly with the property of being 2-generated. In particular $|X_m| > |V|^2$.

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Let $d \ge 3$ and let *F* be the free group of rank *d*.

There exists $\Phi \subseteq \operatorname{Epi}(F, X_m)$ such that

- $|\Phi| > q^{2(d-2)};$
- different elements of Φ have different kernels;
- $x \notin \bigcap_{\phi \in \Phi} \ker(\phi) \Rightarrow C_V(x^{\phi}) \neq 0$ for at least $|\Phi|/4$ choices of ϕ .

Let $d \ge 3$ and let *F* be the free group of rank *d*.

There exists $\Phi \subseteq \operatorname{Epi}(F, X_m)$ such that

- $|\Phi| > q^{2(d-2)};$
- different elements of Φ have different kernels;
- $x \notin \bigcap_{\phi \in \Phi} \ker(\phi) \Rightarrow C_V(x^{\phi}) \neq 0$ for at least $|\Phi|/4$ choices of ϕ .

$$H_m := rac{F}{igcap_{\phi \in \Phi} \ker(\phi)}$$

To every $\phi \in \Phi$ there corresponds an absolutely irreducible H_m -module V_{ϕ} of cardinality q (we identify V_{ϕ} with V and we set $v \cdot h := v^{h^{\phi}}$).

$$G_m := \left(\prod_{\phi \in \Phi} V_{\phi}^n\right) \rtimes H_m \quad \text{with } n = 2 \cdot 4^m (d-1).$$

副 🕨 🗶 🖻 🕨 🖉 🛤 👘

Let $d \ge 3$ and let **F** be the free group of rank d.

There exists $\Phi \subseteq \operatorname{Epi}(F, X_m)$ such that

- $|\Phi| > q^{2(d-2)};$
- different elements of Φ have different kernels;
- $x \notin \bigcap_{\phi \in \Phi} \ker(\phi) \Rightarrow C_V(x^{\phi}) \neq 0$ for at least $|\Phi|/4$ choices of ϕ .

$$H_m := rac{F}{igcap_{\phi \in \Phi} \ker(\phi)}$$

To every $\phi \in \Phi$ there corresponds an absolutely irreducible H_m -module V_{ϕ} of cardinality q (we identify V_{ϕ} with V and we set $v \cdot h := v^{h^{\phi}}$).

$$G_m := \left(\prod_{\phi \in \Phi} V_{\phi}^n\right) \rtimes H_m \quad \text{with } n = 2 \cdot 4^m (d-1).$$

It turns out that $d(G_m) = d$.

回 とくほとくほとう

- Let $W_{\phi} = V_{\phi}^n$, $W = \prod_{\phi} W_{\phi} \cong \text{soc}(G_m)$, $G_m = \prod_{\phi} W_{\phi} \rtimes H$.
- Let *h* be a fixed element in $H_m : (v_1, \ldots, v_n) \in W_{\phi}$ is *h*-positive if $\langle [V_{\phi}, h], v_1, \ldots, v_n \rangle = V_{\phi}$, *h*-negative otherwise.
- For $a \leq \nu = 2 \cdot 4^m$, let $\Sigma_a := \{\phi \mid \dim C_{V_\phi}(h) = a\}, \sigma_a := |\Sigma_a|.$
- Let U_a = Π_{φ∈Σa} W_φ and for any u = (w₁,..., w_{σa}) ∈ U_a, let γ_a(u) be the number of i ∈ {1,..., σ_a} such that w_i is *h*-negative.

Take $w \in W$ and write $w = (u_0, \ldots, u_{\nu})$ with $u_a \in U_a$:

$$\frac{Q_{G_m,d+k}(wh)}{Q_{H_m,d+k}(h)} \leq \frac{\prod_{a\neq 0} \rho_a}{|W|} \quad \text{with} \quad \rho_a = \frac{\left(1 - \frac{1}{q^k}\right)^{\gamma_a(u_a)}}{\prod_{0 \leq i \leq a-1} \left(1 - \frac{2^i}{q^{d+k-1}}\right)^{\sigma_a}}.$$

- Let $W_{\phi} = V_{\phi}^n$, $W = \prod_{\phi} W_{\phi} \cong \text{soc}(G_m)$, $G_m = \prod_{\phi} W_{\phi} \rtimes H$.
- Let *h* be a fixed element in $H_m : (v_1, \ldots, v_n) \in W_{\phi}$ is *h*-positive if $\langle [V_{\phi}, h], v_1, \ldots, v_n \rangle = V_{\phi}$, *h*-negative otherwise.

• For
$$a \leq \nu = 2 \cdot 4^m$$
, let $\Sigma_a := \{\phi \mid \dim C_{V_\phi}(h) = a\}, \sigma_a := |\Sigma_a|.$

Let U_a = Π_{φ∈Σa} W_φ and for any u = (w₁,..., w_{σa}) ∈ U_a, let γ_a(u) be the number of i ∈ {1,..., σ_a} such that w_i is *h*-negative.

Take $w \in W$ and write $w = (u_0, \ldots, u_{\nu})$ with $u_a \in U_a$:

$$\frac{Q_{G_m,d+k}(wh)}{Q_{H_m,d+k}(h)} \leq \frac{\prod_{a\neq 0} \rho_a}{|W|} \quad \text{with} \quad \rho_a = \frac{\left(1 - \frac{1}{q^k}\right)^{\gamma_a(u_a)}}{\prod_{0 \leq i \leq a-1} \left(1 - \frac{2^i}{q^{d+k-1}}\right)^{\sigma_a}}.$$

The complete discussion requires standard probability estimates for large deviations in Bernoulli trials: there exists $a \neq 0$ such that σ_a is large and ρ_a is small for almost all $u_a \in U_a$.

Let *G* be a finitely generated pronilpotent group and let $t \ge d(G) = d$: $\|\kappa_{G,t} - \mu_G\|_{tv} = 1$ if and only if t = d = 1 and $\sum_{p||G|} \frac{1}{p} = \infty$.

• = • •

Let *G* be a finitely generated pronilpotent group and let $t \ge d(G) = d$: $\|\kappa_{G,t} - \mu_G\|_{tv} = 1$ if and only if t = d = 1 and $\sum_{p \mid |G|} \frac{1}{p} = \infty$.

Let *G* be a finitely generated pro-*p*-group: if $t \ge d(G) = d$ then

$$\|\kappa_{G,t}-\mu_G\|_{\mathsf{tv}}=\frac{1}{p^d}\left(\frac{p^d-1}{p^t-1}\right).$$

Let *G* be a finitely generated pronilpotent group and let $t \ge d(G) = d$: $\|\kappa_{G,t} - \mu_G\|_{tv} = 1$ if and only if t = d = 1 and $\sum_{p \mid \mid G \mid} \frac{1}{p} = \infty$.

Let *G* be a finitely generated pro-*p*-group: if $t \ge d(G) = d$ then

$$\|\kappa_{G,t}-\mu_G\|_{\mathsf{tv}}=\frac{1}{p^d}\left(\frac{p^d-1}{p^t-1}\right).$$

QUESTION

Does there exist a finitely generated prosupersolvable group *G* with $\|\kappa_{G,t} - \mu_G\|_{tv} = 1$ for some t > d(G)?

Let *G* be a finitely generated pronilpotent group and let $t \ge d(G) = d$: $\|\kappa_{G,t} - \mu_G\|_{tv} = 1$ if and only if t = d = 1 and $\sum_{\rho \mid \mid G \mid} \frac{1}{\rho} = \infty$.

Let *G* be a finitely generated pro-*p*-group: if $t \ge d(G) = d$ then

$$\|\kappa_{G,t}-\mu_G\|_{\mathsf{tv}}=\frac{1}{p^d}\left(\frac{p^d-1}{p^t-1}\right).$$

QUESTION

Does there exist a finitely generated prosupersolvable group *G* with $\|\kappa_{G,t} - \mu_G\|_{tv} = 1$ for some t > d(G)?

QUESTION

Does there exist a 2-generated prosolvable group *G* with $\|\kappa_{G,3} - \mu_G\|_{tv} = 1$?

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …