Automorphisms of Groups of Odd Order

OLIVEIRA, Karise Gonçalves ${ }^{1}$

Introduction

Let G be a finite group of odd order. It is wellknown that if a is an involutory automorphism of G, then the properties of $C_{G}(a)$ have strong impact over the structure of G.

It was shown by Shumyatsky [2] that if G is a finite group of derived length k and if G admits a fixed-point-free action of the elementary group of order 2^{n}, then G has a normal series of length n all of whose quotients are nilpotent of class bounded in terms of k and n only. Recently a shorter proof of this result was obtained in Shumyatsky and Sica [3].

We consider the situation when the elementary group A of order 2^{n} acts on a group G of odd order in such way that $C_{G}(A)$ has exponent m. Our main result is the following theorem

Theorem 1 Let G be a finite group of odd order and of derived length k. Let A be the elementary group of order 2^{n} acting on G in such way that $C_{G}(A)$ has exponent m. Then G has a normal series

$$
G=G_{1} \geq T_{1} \geq G_{2} \geq T_{2} \geq \ldots \geq G_{n} \geq T_{n}=1
$$

such that the quotients G_{i} / T_{i} are nilpotent of $\{k, m, n\}$-bounded class and the quotients T_{i} / G_{i+1} have $\{k, m, n\}$-bounded exponent.
The proof of the above theorem is based on the same techniques as [2] and [3].

Preliminaries

The following three lemmas are well-known (see for example [4, 6.2.2,6.2.4,10.4.1]).
Lemma 2 Let G be a group and N a normal subgroup of G such that $N=n$ and G / N has exponent d. Then the exponent of G is less or iqual than $n \cdot d$.

Lemma 3 Let G be a finite group admitting a coprime finite group of automorphisms A. Then we have
a) $C_{G / N}(A)=C_{G}(A) N / N$ for any A-invariant normal subgroup N of G;
b) $G=C_{G}(A)[G, A]$;
c) $[G, A]=[G, A, A]$;
d) If G is abelian then $G=C_{G}(A) \oplus[G, A]$.

1: Federal Institute of Education, Science and Technology of Goias, Brazil; email: karisemat@gmail.com. This work is part of PhD thesis written under supervision of Prof. Shumyatsky at University of Brasilia.

Lemma 4 Let G be a finite group of odd order admitting an automorphism a of order 2 such that $G=[G, a]$. Suppose that N be an a-invariant normal subgroup of G such that $C_{N}(a)=1$. Then $N \leq Z(G)$.

Some Results

We are now ready to formulate the key theorem. At first we formulate the Theorem 6 under the hypothesis G being metabelian. It will be done in the next lemma.

Lemma 5 Let G be a metabelian finite group of odd order admitting an automorphism a of order 2 such that $C_{G}(a)$ has exponent m and $G=[G, a]$. Then G^{\prime} has exponent m.

Proof. By the hypothesis $G=[G, a]$ it follows that $C_{G}(a) \subseteq G^{\prime}$. Let N be the normal closure of $C_{G}(a)$ in G. Since G^{\prime} is abelian we conclude that N has exponent m. By the other hand G / N is abelian because a acts on G / N fixed-point-free. Then $G^{\prime}=N$.

Theorem 6 Let G be a finite group of odd order and of derived length k, admitting an automorphism a of order 2 such that $C_{G}($ a) has exponent m and $G=[G, a]$. Then G^{\prime} has $\{m, k\}$-bounded exponent.
Proof. We notice that for $k \leq 2$ the result follows by the Proposition 5. So we assume that $k \geq 3$ and use induction on k. By induction we conclude that $G / G^{(k-1)}$ has $\{m, k\}$-bounded exponent.
So it is suficient to show that $G^{(k-1)}$ has $\{m, k\}$ bounded exponent. Consider $G /\left\langle C_{G^{(k-1)}}(a)^{G}\right\rangle$. Without loss of generality we suppose that $C_{G^{(k-1)}}(a)=1$, so $G^{(k-1)} \leq Z(G)$. Then $G^{(k-2)}$ is nilpotent with class 2. Since $G^{(k-2)} \leq G^{\prime}$ it follows by induction hypothesis that $G^{(k-2)} / G^{(k-1)}$ has $\{m, k\}$-bounded exponent. By [5, Theorem 2.5.2] it follows that $G^{(k-2)}$ has $\{m, k\}$-bounded exponent. Then also has $G^{(k-1)}$.

Theorem 7 Let c, d, q be positive integers. Suppose that G is a soluble group with derived length d. Assume that for any i the metabelian quotient $G^{(i)} / G^{(i+2)}$ is an extention of a group offinite exponent q by a nilpotent group of class c. Then there exist $\{c, d, q\}$-bounded numbers f and g such that G is an extension of a group of finite exponent g by a nilpotent group of class f.

A well-known theorem of Hall [6] says that: if G is a soluble group of derived length k, and all metabelian sections of G are nilpotents of class at
most c, then G is nilpotent with $\{k, c\}$-bounded nilpotency class. We use the related result above in the proof of the next proposition.

Proposition 8 Let G be a finite group of odd order and with derived length k, admitting an elementary abelian group of automorphisms A of order 2^{n} such that $C_{G}(A)$ has exponent m. Then $N=\bigcap_{a \in A^{\#}}[G, a]$ is an extension of a group of $\{k, m, n\}$-bounded exponent by a nilpotent group of $\{k, m, n\}$-bounded class.

Sketch of Proof of the Theorem 1

We use induction on n. For $n=1$ the Proposition 6 guarantes that G^{\prime} has $\{m, k\}$-bounded exponent, and the result follows.

Suppose that $n \geq 2$ and the result is true for any group admitting an elementary abelian group of automorphisms of order less or iqual 2^{n-1}. For any normal A-invariant subgroup T of G the group A induces a group of automorphisms of G / T. In particular A induces a group of automorphisms of $G /[G, a]$ for each $a \in A^{\#}$.

Let B be the elementary group of order 2^{n-1}. So, for each element $a \in A^{\#}$ exists the corresponding action of B on $G /[G, a]$. Let $K=$ $\prod_{A} G /[G, a]$. We have an action of B on K. By the induction hypothesis K has a series of length $2(n-1)$ with the required conditions. Let $N=$ $\bigcap_{a \in A^{\#}}[G, a]$.

Proposition 8 tell us that N is an extension of a group of $\{k, m, n\}$-bounded exponent by a nilpotent group of $\{k, m, n\}$-bounded class. Since G / N embeds in K the result follows.

References

[1] SHUMYATSKY, P., On extensions of groups of finite exponent, Glasgow Math J. 45 (2003), 535-538.
[2] SHUMYATSKY, P., Groups with regular elementary 2groups of automorphisms, Algebra and Logic, 27 no. 6, (1988), 715-730.
[3] SHUMYATSKY, P. and Sica, C., On groups admitting a fixed-point-free elementary 2-group of automorphisms, pre-print.
[4] GORENSTEIN, D., Finite Groups, Harper and Row, New York, Evanston, London, 1968.
[5] KHUKHRO, E., Nilpotent groups and their automorphisms, Berlin, New York, De Gruyter expositions in mathematics; 8, 1993.
[6] HALL, P., Some Sufficient Conditions for a Group to be Nilpotent, Illinois J. Math., 2 (1958), 787-801.

