Examples of θ -Pairs

W. Herfort, TU Vienna

The Definition of a θ -Pair

In [1] Xianhua Li and Shiheng Li, generalizing a concept from [2], gave the definition of a θ pair (C, D) for a proper subgroup H of a finite group G:

(1) C is a subgroup of H and $G = \langle C, H \rangle$.

(2) The normal closure $D := (C \cap H)_G$ of $C \cap H$ in G is a subgroup of C. Whenever $C_1/D < C/D$ then $\langle C_1, H \rangle < G$.

A Simple Example

Let G be a finite non-abelian simple group and P_1 any maximal subgroup of a non-cyclic Sylow subgroup P. Then $(C, D) := (G, (P_1)_G) = (G, G)$ is a θ -pair for P_1 .

A Solvable Example

Let $V = GF(3) \oplus GF(3)$ be the vector space of dimension 2 over the 3-element field GF(3)and $x := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ Note that $\langle x \rangle \cong C_4$, the cyclic group of order 4 and that V does not contain an x-invariant proper subspace. The only non-cyclic Sylow subgroup of G is V. Any maximal subgroup P_1 of V is a 1-

dimensional subspace and hence $D := (P_1)_G$ coincides with V. Setting C := G it turns out that (C, D) is a θ -pair for P_1 .

Every 2-Sylow subgroup of G is conjugate to $\langle x \rangle$. The only maximal subgroup P_1 of $P := \langle x \rangle$ coincides with $\langle x^2 \rangle$ and $D := (P_1)_G = V \langle x^2 \rangle$.

Discussion

•1 The first example is not supersolvable since it is a finite non-abelian simple group.

•• The second example is not supersolvable since V does not possess a 1-dimensional x-invariant subspace.

••• In both examples for every θ -pair (C, D) the factor group C/D is supersolvable.

Conclusion

In [2], N.P. Mukherjee and P. Bhattacharya conclude from |C/D| a prime for every maximal θ -pair (C, D) of a maximal subgroup Mthat G is supersolvable. However, in *their* definition of a θ -pair they stipulate the stronger condition D < C.

In [1] they authors show that G is supersolvable if for every maximal subgroup of every non-cyclic Sylow subgroup there is a θ -pair (C, D) with C/D supersolvable. It is this result that confuses me in light of the above examples.

References

 X. Li and S. Li, Theta pairs and the structure of finite groups, Sib.Math.J. 45(2004)
N.P. Mukherjee and P. Bhattacharya, On theta pairs for a maximal subgroup, Proc.Am.Soc. 109(1990)