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Abstract

If the multiplication group Mult(L) of a connected simply con-
nected 2-dimensional topological loop L is a Lie group, then Mult(L)
is an elementary filiform Lie group F of dimension n + 2, n > 2,
and any such group is the multiplication group of a connected simply
connected 2-dimensional topological loop L. Moreover, if the group
topologically generated by the left translations of L has dimension 3,
then L is uniquely determined by a real polynomial of degree n.

Introduction

The multiplication group Mult(L) and the inner mapping group Inn(L) of
a loop L introduced in [1], [2] are important tools for research since they
strongly reflect the structure of L. In particular, there is a strong corre-
spondence between the normal subloops of L and certain normal subgroups
of Mult(L). Hence, it is an interesting question which groups can be rep-
resented as multiplication groups of loops ([7], [8], [9]). A purely group
theoretic characterization of multiplication groups is given in [7].
Topological and differentiable loops such that the groups G topologically
generated by the left translations are Lie groups have been studied in [5].
There the topological loops L are treated as continuous sharply transitive
sections o : G/H — G, where H is the stabilizer of the identity element
of L in G. In [5] and [3] it is proved that essentially up to two exceptions
any connected 3-dimensional Lie group occurs as the group topologically
generated by the left translations of a connected 2-dimensional topological
loop. These exceptions are either locally isomorphic to the connected com-
ponent of the group of motions or isomorphic to the connected component



of the group of dilatations of the euclidean plane. In contrast to this, if the
group Mult(L) topologically generated by all left and right translations of
a connected 2-dimensional topological loop L is a Lie group, then the iso-
morphism types of Mult(L) and of L are strongly restricted. This is shown
by our theorems, in which Lie groups with filiform Lie algebras (cf. [4], pp.
626-663) play a fundamental role.

The elementary filiform Lie group F,, 12 is the simply connected Lie group
of dimension n + 2 > 3 whose Lie algebra is elementary filiform, i.e. it has
a basis {e1, -, ento} such that [e1,e;] = (n+2 —i)ejpq for 2<i<n+1
and all other Lie brackets are zero. With this notion we can formulate our
theorems as follows:

Theorem 1. Let L be a connected simply connected 2-dimensional topologi-
cal loop which is not a group. The group Mult(L) topologically generated by
all left and right translations of L is a Lie group if and only if Mult(L) is
an elementary filiform Lie group Fn4o with n > 2. Moreover, the group G
topologically generated by the left translations of L is an elementary filiform
Lie group Fpy2, where 1 < m < n, and the inner mapping group Inn(L)
corresponds to the abelian subalgebra (ea,e3,- - ,€ni1).

The loop L of Theorem 1 is a central extension of the group R by the group
R (cf. Theorem 28.1 in [5], p. 338). Hence it is a centrally nilpotent loop
of class 2 and can be represented in R?. If L is not simply connected but
satisfies all other conditions of Theorem 1, then L is homeomorphic to the
cylinder R x R/Z.

Theorem 2. Let G be the elementary filiform Lie group Fpio with n >
1. Then G is isomorphic to the group topologically generated by the left
translations of a connected simply connected 2-dimensional topological loop
L = (R2, %) with the multiplication

(u1, 21)*(ug, 22) = (u1+ug, 21422 —uv1 (ur) +uva (ur)+- - -+ (=1)"ub vy (u1)), (1)

where v; : R - R, i = 1,2,--- | n, are continuous functions with v;(0) = 0
such that the function vy, is non-linear.

For n > 1 the group G coincides with the group Mult(L) topologically
generated by all left and right translations of L if and only if there are
continuous functions s; : R — R, i =1, -+ ,n, such that for all z,u € R the
equation

—a(s1(u) +v1(u) + 2 (s2(w) +v2(w)) + - + (=1)"2" (50 (u) + va(u)

= —uvy(x) + vva(z) + - + (—1)"u v, ()
holds.



Theorem 3. If L is a 2-dimensional connected simply connected topological
loop having the elementary filiform Lie group Fs as the group topologically
generated by the left translations of L, then the multiplication of L is given
by

(u1,21) * (ug, z2) = (u1 + ug, 21 + 22 — ugvi(uy)), (2)

where v : R — R is a non-linear continuous function with v1(0) = 0.

The group Mult(L) topologically generated by all left and right transla-
tions of L is isomorphic to the elementary filiform Lie group Fpio forn > 2
if and only if the continuous function v; : R — R is a polynomial of degree
n.

Basic facts in loop theory

A binary system (L, -) is called a loop if there exists an element e € L such
that x = e-x = x-e holds for all z € L and the equations a-y = band z-a =b
have precisely one solution, which we denote by y = a\b and =z = b/a. A
loop L is proper if it is not associative.

The left and right translations A\, = y — a-y : L — L and p, : y —
y-a: L — L a € L, are permutations of L. The permutation group
Mult(L) = (Xa,pa; a € L) is called the multiplication group of L. The
stabilizer of the identity element e € L in Mwult(L) is denoted by Inn(L),
and Inn(L) is called the inner mapping group of L.

Let K be a group, let S < K, and let A and B be two left transversals to
S'in K (i.e. two systems of representatives for the left cosets of the subgroup
S in K). We say that the two left transversals A and B are S-connected
if a='b=lab € S for every a € A and b € B. By Ck(S) we denote the
core of S in K (the largest normal subgroup of K contained in S). If L is
a loop, then A(L) = {A\;; a € L} and R(L) = {ps; a € L} are Inn(L)-
connected transversals in the group Mult(L), and the core of Inn(L) in
Mult(L) is trivial. The connection between multiplication groups of loops
and transversals is given in [7] by Theorem 4.1. This theorem yields the
following lemma which is important tool to prove Theorems 2 and 3.

Lemma 4. Let L be a loop and A(L) be the set of left translations of L. Let
K be a group containing A(L) and S be a subgroup of K with Ck(S) =1
such that A(L) is a left transversal to S in K. The group K is isomorphic to
the multiplication group Mult(L) of L if and only if there is a left transversal
T to S in K such that A(L) and T are S-connected and K = (A(L),T). In
this case S is isomorphic to the inner mapping group Inn(L) of L.

The kernel of a homomorphism « : (L,0) — (L', %) of a loop L into a
loop L’ is a normal subloop N of L. To the proof of Theorem 1 we need the
following lemma and the classification of Lie transformation groups in [6].



Lemma 5. Let L be a loop with multiplication group Mult(L) and identity
element e.

(i) Let a be a homomorphism of the loop L onto the loop o(L) with kernel
N. Then « induces a homomorphism of the group Mult(L) onto the group
Mult(a(L)).

Denote by M(N) the set {m € Mult(L); xN = m(x)N for all x € L}.
Then M(N) is a normal subgroup of Mult(L), and the multiplication group
of the factor loop L/N is isomorphic to Mult(L)/M(N).

(ii) For every normal subgroup N of Mult(L) the orbit N'(e) is a normal
subloop of L. Moreover, N' < M(N(e)).

The theory of topological loops L is the theory of the continuous binary
operations (z,y) — z -y, (z,y) — x/y, (x,y) — z\y on the topological
space L. If L is a topological loop, then the left translations A, as well as
the right translations p,, a € L, are homeomorphisms of L.

References

[1] A. A. Albert, Quasigroups. I. Trans. Amer. Math. Soc. 54 (1943), 507-
519; Quasigroups. II. Trans. Amer. Math. Soc. 55 (1944), 401-419.

[2] R.H. Bruck, Contributions to the Theory of Loops. Trans. Amer. Math.
Soc. 60 (1946), 245-354.

(3] A. Figula, 2-dimensional topological loops with 3-dimensional solvable
left translation group, Aequationes Math., DOI: 10.1007/s00010-010-
0009-2.

[4] M. Goze, Yu. Khakimjanov, Nilpotent and solvable Lie algebras. In
Handbook of Algebra. Vol. 2 (Ed. M. Hazewinkel), 615-663, Elsevier,
2000.

[5] P. T. Nagy and K. Strambach, Loops in Group Theory and Lie Theory.
Walter de Gruyter 35. Berlin, New York, 2002.

[6] G. D. Mostow, The extensibility of local Lie groups of transformations
and groups of surfaces. Ann. of Math. 52 (1950), no. 3, 606-636.

[7] M. Niemenmaa and T. Kepka, On Multiplication Groups of Loops. J.
Algebra 135 (1990), 112-122.

[8] M. Niemenmaa and T. Kepka, On connected transversals to abelian
subgroups. Bull. Austral. Math. Soc. 49 (1994), no. 1, 121-128.

[9] A. Vesanen, Finite classical groups and multiplication groups of loops.
Math. Proc. Cambridge Philos. Soc. 117 (1995), no. 3, 425-429.



