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Abstract

If the multiplication group Mult(L) of a connected simply con-
nected 2-dimensional topological loop L is a Lie group, then Mult(L)
is an elementary filiform Lie group F of dimension n + 2, n ≥ 2,
and any such group is the multiplication group of a connected simply
connected 2-dimensional topological loop L. Moreover, if the group
topologically generated by the left translations of L has dimension 3,
then L is uniquely determined by a real polynomial of degree n.

Introduction

The multiplication group Mult(L) and the inner mapping group Inn(L) of
a loop L introduced in [1], [2] are important tools for research since they
strongly reflect the structure of L. In particular, there is a strong corre-
spondence between the normal subloops of L and certain normal subgroups
of Mult(L). Hence, it is an interesting question which groups can be rep-
resented as multiplication groups of loops ([7], [8], [9]). A purely group
theoretic characterization of multiplication groups is given in [7].

Topological and differentiable loops such that the groups G topologically
generated by the left translations are Lie groups have been studied in [5].
There the topological loops L are treated as continuous sharply transitive
sections σ : G/H → G, where H is the stabilizer of the identity element
of L in G. In [5] and [3] it is proved that essentially up to two exceptions
any connected 3-dimensional Lie group occurs as the group topologically
generated by the left translations of a connected 2-dimensional topological
loop. These exceptions are either locally isomorphic to the connected com-
ponent of the group of motions or isomorphic to the connected component
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of the group of dilatations of the euclidean plane. In contrast to this, if the
group Mult(L) topologically generated by all left and right translations of
a connected 2-dimensional topological loop L is a Lie group, then the iso-
morphism types of Mult(L) and of L are strongly restricted. This is shown
by our theorems, in which Lie groups with filiform Lie algebras (cf. [4], pp.
626-663) play a fundamental role.

The elementary filiform Lie group Fn+2 is the simply connected Lie group
of dimension n + 2 ≥ 3 whose Lie algebra is elementary filiform, i.e. it has
a basis {e1, · · · , en+2} such that [e1, ei] = (n + 2 − i)ei+1 for 2 ≤ i ≤ n + 1
and all other Lie brackets are zero. With this notion we can formulate our
theorems as follows:

Theorem 1. Let L be a connected simply connected 2-dimensional topologi-
cal loop which is not a group. The group Mult(L) topologically generated by
all left and right translations of L is a Lie group if and only if Mult(L) is
an elementary filiform Lie group Fn+2 with n ≥ 2. Moreover, the group G
topologically generated by the left translations of L is an elementary filiform
Lie group Fm+2, where 1 ≤ m ≤ n, and the inner mapping group Inn(L)
corresponds to the abelian subalgebra 〈e2, e3, · · · , en+1〉.

The loop L of Theorem 1 is a central extension of the group R by the group
R (cf. Theorem 28.1 in [5], p. 338). Hence it is a centrally nilpotent loop
of class 2 and can be represented in R2. If L is not simply connected but
satisfies all other conditions of Theorem 1, then L is homeomorphic to the
cylinder R× R/Z.

Theorem 2. Let G be the elementary filiform Lie group Fn+2 with n ≥
1. Then G is isomorphic to the group topologically generated by the left
translations of a connected simply connected 2-dimensional topological loop
L = (R2, ∗) with the multiplication

(u1, z1)∗(u2, z2) = (u1+u2, z1+z2−u2v1(u1)+u2
2v2(u1)+· · ·+(−1)nun

2 vn(u1)), (1)

where vi : R → R, i = 1, 2, · · · , n, are continuous functions with vi(0) = 0
such that the function vn is non-linear.

For n > 1 the group G coincides with the group Mult(L) topologically
generated by all left and right translations of L if and only if there are
continuous functions si : R → R, i = 1, · · · , n, such that for all x, u ∈ R the
equation

−x(s1(u) + v1(u)) + x2(s2(u) + v2(u)) + · · ·+ (−1)nxn(sn(u) + vn(u))

= −uv1(x) + u2v2(x) + · · ·+ (−1)nunvn(x)

holds.
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Theorem 3. If L is a 2-dimensional connected simply connected topological
loop having the elementary filiform Lie group F3 as the group topologically
generated by the left translations of L, then the multiplication of L is given
by

(u1, z1) ∗ (u2, z2) = (u1 + u2, z1 + z2 − u2v1(u1)), (2)

where v1 : R → R is a non-linear continuous function with v1(0) = 0.
The group Mult(L) topologically generated by all left and right transla-

tions of L is isomorphic to the elementary filiform Lie group Fn+2 for n ≥ 2
if and only if the continuous function v1 : R → R is a polynomial of degree
n.

Basic facts in loop theory

A binary system (L, ·) is called a loop if there exists an element e ∈ L such
that x = e·x = x·e holds for all x ∈ L and the equations a·y = b and x·a = b
have precisely one solution, which we denote by y = a\b and x = b/a. A
loop L is proper if it is not associative.
The left and right translations λa = y 7→ a · y : L → L and ρa : y 7→
y · a : L → L, a ∈ L, are permutations of L. The permutation group
Mult(L) = 〈λa, ρa; a ∈ L〉 is called the multiplication group of L. The
stabilizer of the identity element e ∈ L in Mult(L) is denoted by Inn(L),
and Inn(L) is called the inner mapping group of L.

Let K be a group, let S ≤ K, and let A and B be two left transversals to
S in K (i.e. two systems of representatives for the left cosets of the subgroup
S in K). We say that the two left transversals A and B are S-connected
if a−1b−1ab ∈ S for every a ∈ A and b ∈ B. By CK(S) we denote the
core of S in K (the largest normal subgroup of K contained in S). If L is
a loop, then Λ(L) = {λa; a ∈ L} and R(L) = {ρa; a ∈ L} are Inn(L)-
connected transversals in the group Mult(L), and the core of Inn(L) in
Mult(L) is trivial. The connection between multiplication groups of loops
and transversals is given in [7] by Theorem 4.1. This theorem yields the
following lemma which is important tool to prove Theorems 2 and 3.

Lemma 4. Let L be a loop and Λ(L) be the set of left translations of L. Let
K be a group containing Λ(L) and S be a subgroup of K with CK(S) = 1
such that Λ(L) is a left transversal to S in K. The group K is isomorphic to
the multiplication group Mult(L) of L if and only if there is a left transversal
T to S in K such that Λ(L) and T are S-connected and K = 〈Λ(L), T 〉. In
this case S is isomorphic to the inner mapping group Inn(L) of L.

The kernel of a homomorphism α : (L, ◦) → (L′, ∗) of a loop L into a
loop L′ is a normal subloop N of L. To the proof of Theorem 1 we need the
following lemma and the classification of Lie transformation groups in [6].
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Lemma 5. Let L be a loop with multiplication group Mult(L) and identity
element e.

(i) Let α be a homomorphism of the loop L onto the loop α(L) with kernel
N . Then α induces a homomorphism of the group Mult(L) onto the group
Mult(α(L)).

Denote by M(N) the set {m ∈ Mult(L); xN = m(x)N for all x ∈ L}.
Then M(N) is a normal subgroup of Mult(L), and the multiplication group
of the factor loop L/N is isomorphic to Mult(L)/M(N).

(ii) For every normal subgroup N of Mult(L) the orbit N (e) is a normal
subloop of L. Moreover, N ≤ M(N (e)).

The theory of topological loops L is the theory of the continuous binary
operations (x, y) 7→ x · y, (x, y) 7→ x/y, (x, y) 7→ x\y on the topological
space L. If L is a topological loop, then the left translations λa as well as
the right translations ρa, a ∈ L, are homeomorphisms of L.
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