

Positive words and laws on groups

- Let X be an alphabet of symbols $\{x_1, x_2, \ldots\}$; a word on X is an element of the free group on X. The word w is positive if it does not involve any inverses of the symbols x_i .
- Let T be a subset of a group G. If α , β are two different positive words on $\{x_1, x_2, \ldots, x_n\}$, T satisfies the positive law

$$\alpha(x_1,\ldots,x_n) \equiv \beta(x_1,\ldots,x_n)$$

if every substitution $x_i \mapsto t_i$ with $t_i \in T$ gives the same value for α and β as elements in G. The degree of the law is $\max\{|\alpha|, |\beta|\}$. If α and β have the same length the law is homogeneous.

• A basic example of positive laws is given by a series of homogeneous positive laws on two symbols. First, we define recursively two series of positive words on $\{x, y\}$:

$$\begin{bmatrix} \alpha_0 = x, & \beta_0 = y, \\ \alpha_c = \alpha_{c-1}\beta_{c-1}, & \beta_c = \beta_{c-1}\alpha_{c-1}, & (c \ge 1). \end{bmatrix}$$

Let $M_c(x, y)$ denote the positive law

$$\alpha_c(x,y) \equiv \beta_c(x,y).$$

- It is a homogeneous positive law of degree 2^c and it is said to be a *Malcev-Thue-Morse law*. For example, $M_1(x, y)$ is $xy \equiv yx$ and $M_2(x, y)$ is $xyyx \equiv yxxy$.
- It is well known that every nilpotent group of class c satisfies $M_c(x, y)$ and, as a consequence, that every nilpotent-by-(finite exponent) group satisfies a law of the form $M_c(x^e, y^e)$.
- In 1953 A. I. Malcev conjectured that a group G satisfying a positive law should be nilpotent-by-(finite exponent) but unfortunately this conjecture is false because in 1996 Olshanskii and Storozhev constructed a counterexample.
- The good news is that the conjecture holds for many classes of groups or, more precisely, for the big class of locally graded groups (cfr. [1] and [2]).

Positive laws on "large" sets of generators

- Suppose that we do not know whether the whole group G satisfies a positive law, but only that a set of generators T of G satisfies a positive law.
- Does this imply the possibility to extend the property of satisfying a positive law to the whole group G?
- This depends on the "size" of the generating set T with respect to the whole group G.
- If the set T is sufficiently large, for example, if T is normal in G and commutator closed, i.e. closed under taking conjugates by elements of G and commutators of its elements, then G.A. Fernández-Alcober and P. Shumyatsky obtain the following positive result for a finitely generated residually-p group (cfr. [3] and [4]).

Theorem A (2007, G.A. Fernández-Alcober and P. Shumyatsky)

Let G be a d-generated residually-p group which satisfies a certain law $w \equiv 1$. Suppose that G is generated by a commutator-closed normal subset T satisfying a positive law of degree n. Then there exists a finite set of primes P(n), which depends only on n, with the following property: if $p \notin P(n)$, then G is nilpotent of $\{n, p, d, w\}$ -bounded class. In particular, the whole group G satisfies a positive law of $\{n, p, d, w\}$ -bounded degree.

The law $M_c(x, y)$ for infinitely generated groups

- What will happen if in Theorem A we get rid of the condition of finite generation for the group G?
- We see that the result does not remain valid any more.
- By fixing the law $M_c(x, y)$ and eliminating the finitely generated condition for G, we are able to construct an example for every odd c, as it is stated in the following theorem.

Positive laws on large sets of generators and on word values

Cristina Acciarri

ISCHIA GROUP THEORY 2010

Theorem B (G.A. Fernández-Alcober and C. A.)

- For each $c \ge 3$, there exists an infinitely generated metabelian group G such that: G is residually-p for all primes p.
- G can be generated by a commutator-closed normal subset T satisfying the positive law $M_c(x,y)$.
- G does not satisfy a positive law.

Idea of the proof

We want to construct an infinite direct product

 $G = G_c \times G_{c+1} \times \cdots \times G_n \times \cdots$

where every group G_n has these properties:

- G_n is a nilpotent residually-p group.
- G_n can be generated by a normal commutator-closed subset T_n which satisfies $M_c(x, y)$. • G_n does not satisfy $M_n(x, y)$.
- Note that $n \ge c$ and the "distance" between $M_c(x, y)$ and $M_n(x, y)$ increases with n. We take $G_n = B_n \ltimes A_n$, where:
- $B_n = \langle t_1, \ldots, t_n \rangle$ is a group of matrices of size d = d(n) and t_1, \ldots, t_n commute.
- $A_n = \mathbb{Z} \times \stackrel{d(n)}{\cdots} \times \mathbb{Z}.$

We put $T_n = t_1 A_n \cup \cdots \cup t_n A_n \cup A_n$, which is commutator-closed, normal and generates all of G_n . As a consequence of a technical lemma we are able to choose the matrices t_1, \ldots, t_n such that T_n satisfies the law $M_c(x, y)$ and G_n does not satisfy $M_n(x, y)$. Note that G_n is residually-p for every prime p because it is a finitely generated torsion-free nilpotent group. Finally, by construction, we obtain that: $\odot G$ is metabelian and residually-p for every prime p.

- G can be generated by $T = \bigcup_{n \ge c} T_n$.
- T is normal commutator-closed and it satisfies $M_c(x, y)$.
- G cannot satisfy any law $M_n(x, y)$. By way of contradiction, we also prove that the group G does not satisfy a positive law.

Positive laws on normal sets: *p*-adic analytic case for almost all primes

- Another goal is to improve Theorem A in the particular case of a p-adic analytic group G with the weaker hypothesis that the generating set T is only normal.
- The key ingredients for this result are:
- \blacktriangleright the properties of G as a p-adic analytic pro-p group.
- We obtain a positive result for almost all primes but we only need topological generation for the whole group G. We have the following theorem.

Theorem C (G.A. Fernández-Alcober and C. A.)

Let G be a p-adic analytic pro-p group of rank r which satisfies a certain law $w \equiv 1$. Suppose that G can be topologically generated by a normal subset T satisfying a positive law of degree n. If $p \notin P(n)$, then G is nilpotent of $\{p, r, n, w\}$ -bounded class. In particular, the whole group G satisfies a positive law of $\{p, r, n, w\}$ -bounded degree.

Positive laws on normal sets: residually-*p* **case for almost all primes**

As an application of Theorem C, by using the pro-*p* completion, we obtain a similar result for residually-p groups of finite upper rank.

Theorem D (G.A. Fernández-Alcober and C. A.)

Let G be a residually-p group of finite upper rank r which satisfies a certain law $w \equiv 1$. Suppose that G can be generated by a normal subset T satisfying a positive law of degree n. If $p \notin P(n)$, then G is nilpotent of $\{p, r, n, w\}$ -bounded class.

• the analysis of the unipotent action of the normal generating set T on the abelian normal sections of G;

Positive laws on normal sets of finite width: nilpotency for all primes

• In Theorem C the finite set P(n) of "bad" primes is a real obstruction in fact it is possible to construct a powerful counterexample for every prime p. • In order to improve the result we have to impose the extra condition of finite width on the

normal generating set T. Recall that we say that T has finite width m if every element of $\langle T \rangle$ is a product of at most m elements of $T \cup T^{-1}$.

• We have the following result for a powerful *p*-adic analytic pro-*p* group.

Theorem E (G.A. Fernández-Alcober and C. A.)

Let G be a powerful pro-p group of rank r which satisfies a certain law $w \equiv 1$. Suppose that $G = \langle T \rangle$, where T is a normal generating subset of width m, which satisfies a positive law of degree n. Then G is nilpotent of $\{p, r, n, w, m\}$ -bounded class. In particular, G satisfies a positive law of $\{p, r, n, w, m\}$ -bounded degree.

Positive laws on word values

- positive law on the corresponding verbal subgroup $w(G) = \langle G_w \rangle$?
- Note that, by definition, G_w is always a normal set but it not need to be commutator-closed.

Theorem F (G.A. Fernández-Alcober and C. A.)

Let G be a p-adic analytic pro-p group of rank r and let w be any word. If all w-values in G satisfy a positive law of degree n, and $p \notin P(n)$, then the verbal subgroup w(G) is nilpotent of $\{p, r, n, w\}$ -bounded class. In particular, w(G) satisfies a positive law of $\{p, r, n, w\}$ -bounded degree.

- subset G_w has finite width.
- w(G) also in an abstract sense.
- group and we obtain the following result.

Theorem G (G.A. Fernández-Alcober and C. A.)

Let G be a p-adic analytic pro-p group, and let w be any word. If all w-values in G satisfy a positive law and the verbal subgroup w(G) is a finitely generated powerful pro-p group, then w(G) is nilpotent. In particular, w(G) satisfies a positive law.

References

[1] **B. Bajorska and O. Macedońska**, On positive law problems in the class of locally graded groups, *Comm. Algebra* **32**, No. 5, (2004), 1841-1846. [2] **R.G. Burns and Yu. Medvedev**, Groups laws implying virtual nilpotence, *J. Austral. Math. Soc.* **74** (2003), 295-312. [3] G.A. Fernández-Alcober and P. Shumyatsky, Positive laws on word values in residually-p groups, preprint. [4] G. Fernández Alcober and P. Shumyatsky, Positive laws on large sets of generators and on word values, Proceedings Ischia Group Theory 2006 (2007), 125-137. [5] **A. Jaikin-Zapirain**, On the verbal width of finitely generated pro-p groups, *Revista* Matemática Iberoamericana **168** (2008), 393-412.

 \circ The previous problem about a "large" generating set T satisfying a positive law and the nilpotency of the whole group G has an application to the case of the values of a word w. • Let G_w be the subset of all values of w in a group G. Does a positive law on G_w imply a

• By applying Theorem C to the case of a verbal subgroup we obtain the following result.

• By a result in [5] every word w has finite width in a compact p-adic analytic group, i.e the

• As a consequence of this fact $w(G) = \overline{w(G)}$ and so G_w generates the topological closure

• Thus, we may apply Theorem E to a powerful verbal subgroup in a p-adic analytic pro-p

http://www.dmi.unisa.it/ischia2010/posters/Acciarri.pdf