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ABSTRACT
We consider a multi-sigmoidal generalization of the logistic growth model. The deterministic
model is provided together with its stochastic counterpart. More in detail, we analyse two
different birth-death processes with linear and quadratic rates, respectively. From the latter we
derive a more manageable diffusive approximation by means of a suitable scaling. Furthermore,
we study two possible strategies to obtain the maximum likelihood estimates of the parameters.
To validate the described procedures, we conclude with a simulation study. The first-passage-
time problem is also addressed.

Keywords: Logistic model, multi-sigmoidal growth models, birth-death process, diffusion pro-
cess, maximum likelihood estimation, first-passage-time problem.

1. INTRODUCTION

The exponential curve is the most common basic model to describe growth of popu-
lations in ideal conditions. However, such kind of growth does not occur in nature apart
from short time periods. For most living species, indeed, there exists a critical density
beyond which the relative population does not find sufficient environmental factors to
grow and reproduce. Mathematical models which take into account environmental fac-
tors that limit the growth rate of population are characterized by a S-shape and for this
reason are called sigmoidal. The logistic model, more in detail, is a sigmoidal growth
model with an initial slow growth followed by an explosion of exponential-type which
finally flattens up to an equilibrium status, known as carrying capacity. The applica-
tion of sigmoidal curves are various and they involve several contexts of interest, from
biology to medicine, from ecology to software reliability (see, for instance, Erto et al.
(2020)). For example, in the recent works of Rajasekar et al. (2020) the authors anal-
yse a stochastic version of SIR model for the diffusion of the COVID-19 pandemic, by
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considering a logistic-kind growth for the susceptible individuals.
Anyway, it is possible that a population reaches its limit value after various suc-

cessive steps. This is the reason why recent investigations address their interest to a
generalization of the sigmoidal models by introducing multiple inflections. Such gen-
eralizations are the so-called multi-sigmoidal models (cf. Román-Román et al. (2019)).
The multi-sigmoidal logistic model, in particular, is appropriate to describe maturation
of some fruit species as peaches or coffee berries (see Figure 1) which show a growth
trend with multiple fluctuations.
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Figure 1: The multi-sigmoidal growth of coffee berries. The data are taken from Cuhna and
Volpe (2011).

This work is a brief summary of a larger study concerning multi-sigmoidal logistic
growth model. The deterministic model together with the birth-death processes and
the diffusive approximation have been analysed widely in Di Crescenzo et al. (2021a).
Whereas, the statistical analysis of the above-mentioned model is the subject of a paper
submitted for publication (cf. Di Crescenzo et al. (2021b)).

2. THE DETERMINISTIC MODEL

The multi-sigmoidal logistic curve lm(t) satisfies a generalized version of the Cauchy
problem related to the classical logistic model, i.e.

d

dt
lm(t) = hθ(t)lm(t), t ≥ t0, lm(t0) = l0, (1)

where

hθ(t) =
Pβ(t)e−Qβ(t)

η + e−Qβ(t)
, (2)

with

Qβ(t) =

p∑
i=1

βit
i, βp > 0, Pβ(t) =

d

dt
Qβ(t), (3)
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for η > 0, β1, . . . , βp−1 ∈ R, βp > 0, θ = (η, βT )T and βT = (β1, . . . , βp), p ∈ N.
Note that when p = 1, Qβ(t) is linear and from Eq. (1) we come to the classical logistic
equation. The solution of the initial value problem (1) is given by

lm(t) = l0
η + e−Qβ(t0)

η + e−Qβ(t)
, t ≥ t0. (4)

In Eqs. (1) and (4) the subscript m means ‘multi-sigmoidal’. Various choices of the
parameters η, β1, . . . , βp lead to different kinds of shape characterized by multiple in-
flection points. See, for instance, Figure 2. It is possible to show that the carrying
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Figure 2: The multi-sigmoidal logistic function for p = 3, t0 = 0, l0 = 0.1, β1 = 0.1 (a)
β2 = 0.2, β3 = 0.1, (b) β2 = −0.009, β3 = 0.0002. In both cases η = e−0.5, e−1, e−2 (from
bottom to top).

capacity of the model depends on the relevant parameters θ and on the initial condition
lm(t0) = l0. More in detail, it is given byC/η withC = C(l0, θ, t0) = l0(η+e−Qβ(t0)).
Indeed, from the assumption βp > 0, one has the following limit

lim
t→∞

lm(t) = l0
η + e−Qβ(t0)

η
=
C

η
.

A key-role in the analysis of the multi-sigmoidal logistic function is played by the inflec-
tion points which give to the curve the characteristic shape. By performing the second
derivative of Eq. (4), it is possible to show that the inflection points are the solutions of
the following equation (in the unknown t ≥ t0)

d2

dt2
Qβ(t) =

(
d

dt
Qβ(t)

)2 η − e−Qβ(t)

η + e−Qβ(t)
, (5)

with Qβ(t) defined in Eq. (3). Due to the transcendental nature of the above-mentioned
equation, one is forced to use numerical methods to solve it.

Example 1. With reference to the real data given in Section 1, we now consider an
application of the multi-sigmoidal model. To avoid numerical problems, we perform a
time shifting so that t0 = 0 (this does not affect the generality of the analysis, as pointed
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Figure 3: Fitted multi-sigmoidal logistic curve for the coffee berries with (a) integer and (b)
non-integer degrees, with r = −4.498494 · 10−1 in case (b).

out in Remark 2.1 of Di Crescenzo et al. (2021a)). Specifically, we determine the values
of the parameters θ minimizing the square error Sp defined as follows

Sp(θ) =
n∑
i=1

(yi − lm(ti))
2, θ = (η, βT )T

where yi are the data, ti are the shifted times for i = 1, . . . , n and p is the degree of Qβ .
As shown in Figure 3-(a), the best fit is attained when p = 4. Note that the minimiza-
tion of the function Sp has been performed by means of the Nelder-Mead optimization
method. Since it is an iterative method, the needed initial solution can be determined as
described in Section 3 of Di Crescenzo et al. (2021a). To improve the goodness-of-fit of
the proposed model, the last term of the polynomial Qβ can be modified to have a real
exponent:

l̃m(t) = l0
η + e−Q̃β(t0)

η + e−Q̃β(t)
, t ≥ t0,

where Q̃β(t) = β1t + β2t
2 + β3t

3 + β4t
4+r and r ∈ R. Now the aim is to find the

best set of parameters θ̃ = (θT , r)T , i.e. the set which minimizes the cumulative square
error defined below

S4+r(θ̃) =
n∑
i=1

(yi − l̃m(ti))
2,

where, as above, yi are the data, ti are the time instants for i = 1, . . . , n. As shown
in Figure 3-(b), the goodness-of-fit increases since S4(θ) > S4+r(θ̃). In particular, we
have S4(θ) = S4+r(θ̃) + 22, 52%.

3. BIRTH-DEATH PROCESSES

Birth-death (BD) processes are often adopted to describe stochastic dynamics in var-
ious fields of biomathematics, being appropriate to model the random evolution of the
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number of particles or individuals in a system. Let us consider a time-inhomogeneous
BD process {N(t); t ≥ 0} with state space N0 and linear birth and death rates given by

bn(t) = nλ(t), n ∈ N0

dn(t) = nµ(t), n ∈ N, d0(t) = 0,
(6)

where the individual birth and death rates λ and µ are integrable and positive functions
in any set (0, t) with t ≥ 0. In the following proposition, a sufficient and necessary
condition to have a conditional mean of multi-sigmoidal logistic type is provided (as
done elsewhere, for example in Di Crescenzo and Paraggio (2019) and Di Crescenzo
and Spina (2016)).

Proposition 1. The BD process N(t) with rates given in Eq. (6) has conditional mean
E[X(t)|X(0) = n0] of multi-sigmoidal logistic type if, and only if, the net growth rate
ξ(t) = λ(t)− µ(t) is given by ξ(t) = hθ(t), for t ≥ 0.

See Figure 4 for some plots of the conditional mean considering different choices
of the parameters.
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Figure 4: The conditional mean E(t) = E[X(t)|X(0) = n0] for p = 3, t0 = 0, β1 = 0.1,
β2 = −0.009, β3 = 0.0002 (a) η = e−1 and n0 = 1, 2, 3 (from bottom to top) (b) n0 = 1,
η = e−0.5, e−1, e−1.5 (from bottom to top).

The first-passage-time (FPT) problem is relevant in several applications in population
dynamics since the first crossing of a critical high (low) threshold can be viewed as the
rising of an overpopulation (extinction). For a fixed threshold n ∈ N, the FPT of the
process N(t) through the state n starting from N(0) = n0 is defined as follows

Tn0,n = inf {t ≥ 0 : N(t) = n} , N(0) = n0.

Let us denote by gn0,n the corresponding probability density function, i.e.

gn0,n(t) =
d

dt
P (Tn0,n ≤ t) , t ≥ 0.

Considering the same matrix-based approach adopted by Tan in Section 3 of Tan (1986),
the FPT density vector gn := [g1,n, . . . , gn−1,n]T can be expressed as

gn(t) = λ(t)
(
P1e

DP−1
1

)−Λ(t) (
P2e

DP−1
2

)−M(t)
P1DP

−1
1 In−1,1,
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where Ai = PiDP
−1
i for i = 1, 2, A1 =

(
a

(1)
i,j

)
and A2 =

(
a

(2)
i,j

)
defined in such a

way

a
(1)
i,j =


−i, j = i+ 1
i, j = i
0, otherwise

for i = 1, . . . , n− 2 and

a
(2)
i,j =


−i, j = i− 1
i, j = i
0, otherwise

for i = 2, . . . , n − 1. Moreover, Λ(t) =
∫ t

0 λ(s)ds, M(t) =
∫ t

0 µ(s)ds and In−1,1 is
a column of all 1 of dimension n − 1. In Figure 5 we provide some plots of the FPT
density.
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Figure 5: The FPT density for λ(t) = 2hθ(t), µ(t) = hθ(t), Qβ(t) = 0.1t + 0.2t2 + 0.1t3,
n0 = 1 (solid), 2 (dashed), 3 (dotted), 4 (dot-dashed) and (a) n = 4 and (b) n = 5.

In various applications in biomathematics the systems under investigation are sub-
ject to dynamics regulated by transitions where rates are allowed to be nonlinear. Let{
X̄(t); t ≥ 0

}
be an inhomogeneous nonlinear BD process having N0 as state space

and birth and death rates given by

b̄n(t) = λ1(t) + λ2(t)n+ λ3(t)n2, n ∈ N0,

d̄n(t) = µ1(t) + µ2(t)n+ µ3(t)n2, n ∈ N, d0(t) = 0,
(7)

where λ1 and µ1 are non-negative and integrable functions and λi and µi for i = 2, 3
are positive and integrable functions on any set (0, t). It is easy to note that when
λ1(t) = µ1(t) = 0 and λ3(t) = µ3(t), then the mean m1(t) = E[N̄(t)|N̄(0) = n0]
satisfies the differential equation

d

dt
m1(t) = (λ2(t)− µ2(t))m1(t),
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which is a differential equation of the same type of Eq. (1). Hence, assuming that
λ2(t)− µ2(t) = hθ(t), the mean can be expressed as

m1(t) = n0
η + e−Qβ(t0)

η + e−Qβ(t)
, m1(0) = n0.

4. THE CORRESPONDING DIFFUSION PROCESS

In order to obtain a more manageable description of the growth phenomenon, we
perform a diffusive approximation of the BD process with nonlinear rates given in Eq.
(7). The diffusive approximation is based on the scaled BD process Nε(t) = εN̄(t)
whose probability pεn(t), for ε ' 0, gives pεn(t) ' f(x, t)ε with x = nε. Under some
suitable assumptions, the limits below hold for ε→ 0

(µi(t)− λi(t))ε→ 0, i = 1, 3, (µ2(t)− λ2(t))ε→ −r(t),
(µi(t) + λi(t))ε

2 → 0, i = 1, 2, (µ3(t) + λ3(t))ε2 → σ2.

Hence, performing the derivative of f with respect to t and expanding f as a Taylor se-
ries around x, the density function f of the approximating process satisfies the following
Fokker-Plank equation

∂

∂t
f(x, t) = − ∂

∂x
[r(t)xf(x, t)] +

1

2

∂2

∂x2
[σ2x2f(x, t)].

In other terms, for r(t) = hθ(t) with hθ defined in Eq. (2), the BD process N̄(t) leads
to the lognormal diffusion process X(t) having infinitesimal moments

A1(x, t) = hθ(t)x, A2(x) = σ2x2.

The initial condition pn0(0) = 1 becomes limt→0 f(x, t) = δ(x − x0), where δ is
the Dirac delta function. The resulting diffusion process {X(t); t ≥ t0} has state space
(0,+∞) and is governed by the following SDE:

dX(t) = hθ(t)X(t)dt+ σX(t)dW (t), X(t0) = X0, (8)

whereW (t) is a Wiener process independent on the initial conditionX0, for any t ≥ t0,
θ = (η, βT )T and σ > 0. By applying Itô’s formula to Eq. (8), we obtain

X(t) = X0 exp [Hξ(t0, t) + σ (W (t)−W (t0))] , t ≥ t0, (9)

where ξ = (θT , σ2)T is the vector containing the parameters of the model and

Hξ(s, t) = log
η + e−Qβ(s)

η + e−Qβ(t)
− σ2

2
(t− s), t0 ≤ s < t. (10)
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It is worth to notice that if the initial state X0 is lognormally distributed with param-
eters µ0 and σ2

0 or is degenerate, then the finite dimensional distributions of X(t) are
lognormal. Under the above-mentioned assumptions on X0, the mean of the process is

m1(t) = E[X(t)] = E[X0]
η + e−Qβ(t0)

η + e−Qβ(t)
, t ≥ t0,

the mode is

Mode[X(t)] = Mode[X0]
η + e−Qβ(t0)

η + e−Qβ(t)
exp

(
−3

2
σ2(t− t0)

)
, t ≥ t0,

and, finally, the median is

med[X(t)] = med[X0]
η + e−Qβ(t0)

η + e−Qβ(t)
exp

(
−σ

2

2
(t− t0)

)
, t ≥ t0.

5. MAXIMUM LIKELIHOOD ESTIMATES

In this section we describe two different procedures to find the maximum likelihood
estimates (MLEs) of the parameters. We consider a discrete sampling of X(t) based on
d independent sample paths, with ni different observation instants for the i-th sample
path, i.e. tij for j = 1, . . . , ni, i = 1, . . . , d. For simplicity, we assume that the first
time instant is the same for all the sample paths, i.e. ti1 = t0, i = 1, . . . , d. The vector
X = (XT1 | . . . |XTd )T , where Xi = (X(ti1), . . . , X(tini))

T for i = 1, . . . , d and X(t0)
is lognormally distributed with parameters µ1 and σ2

1 , has density

fX(x) =
d∏
i=1

exp

(
−(log xi,1 − µ1)2

xi,1σ1

√
2π

)
ni−1∏
j=1

exp

−
[
log

(
xi,j+1
xi,j

)
−mi,j+1,j

ξ

]2
2σ2∆j+1,j

i


xi,jσ

√
2π∆j+1,j

i

where ∆m,n
i = ti,m − ti,n, m,n = 1, . . . , ni − 1, m > n, ξ = (θT , σ2)T and mi,m,n

ξ =
Hξ(ti,n, ti,m) with Hξ defined in Eq. (10).

If (µ1, σ
2
1) and ξ are functionally independent, the MLEs of (µ1, σ

2
1) leads to µ̂1 =

1

d
log xi,1, and σ̂2

1 =
1

d

d∑
i=1

(log xi,1 − µ̂1)2. The estimation of ξ is obtained from the

following system {
σ2
(
n+ σ2

4 Z3

)
− Z1 −Aθ + 2Bθ = 0

Y θ
l + σ2

2 W
θ
l +Xθ

l = 0, l = 0, 1, . . . , p,
(11)
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where for v0i = xi,1 and vi,j =
(

∆j+1,j
i

)−1/2
log
(
xi,j+1

xi,j

)
, j = 1, . . . , ni − 1, i =

1, . . . , d, we have set

W θ
l =

d∑
i=1

lD
i,ni,1
θ , Y θ

l =

d∑
i=1

ni−1∑
j=1

1

∆j+1,j
i

log

[
η + e−Qβ(ti,j+1)

η + e−Qβ(ti,j)

]
lD

i,j+1,j
θ

Xθ
l =

d∑
i=1

ni−1∑
j=1

vi,j(
∆j+1,j
i

)1/2 l
Di,j+1,j
θ , l = 0, 1, . . . , p,

λi,m,nθ = log
η + eQβ(ti,n)

η + eQβ(ti,m)
, m > n, i = 1, . . . , d, Z1 =

d∑
i=1

ni−1∑
j=1

v2
ij

Z3 =

d∑
i=1

∆ni,1
i , Aθ =

d∑
i=1

ni−1∑
j=1

(
λi,j+1,j
θ

)2

∆j+1,j
i

, Bθ =

d∑
i=1

ni−1∑
j=1

vi,jλ
i,j+1,j
θ(

∆j+1,j
i

)1/2
.

From now on, we suppose, without loss of generality, that t0 = 0 and that ni = N for
i = 1, . . . , d. The system (11) cannot be solved explicitly and it is therefore necessary
to use a numerical method, such as Newton-Raphson. Hence, an initial approximation
is required. An initial solution of σ2 is calculated by performing a simple linear regres-
sion of σ2

i = 2 log(mi/m
g
i ) where mi denotes the sample mean and mg

i the geometric
sample mean. Whereas, an initial solution for the coefficients β and η is obtained by a
linear regression taking as data the pairs

(
ti,− log

(
mN
mi
− 1
))

where mN is the last
value of the sample mean.

Alternatively, one can obtain the estimates of ξ by maximizing the likelihood func-
tion

L̃(ξ) = −n
2

log σ2 −
Z1 + Φξ − 2Γξ

2σ2
,

where

n =

d∑
i=1

(ni − 1), Z1 =

d∑
i=1

ni−1∑
j=1

1

∆j+1,j
i

log2 xi,j+1

xi,j

φξ =

d∑
i=1

ni−1∑
j=1

(mi,j+1,j
ξ )2

∆j+1,j
i

, Γξ =

d∑
i=1

ni−1∑
j=1

1

(∆j+1,j
i )1/2

log
xi,j+1

xi,j
mi,j+1,j
ξ .

To maximize the function L̃, we use a meta-heuristic optimization method, namely Sim-
ulated Annealing (S.A.). This algorithm (see as a reference Kirkpatrick et al. (1983)) is
used for problems like finding arg minθ∈Θ f(θ) and in recent years also in the context
of parameters estimation (cf. da Luz Sant’Ana et al. (2018) and Román-Román and
Torres-Ruiz (2015)). At any step, S.A. generates a new solution in a neighborohood
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of the previous one and (i) if the new solution improves the objective function, then it
replaces the previous, otherwise (ii) if the new solution does not improve the objective
function, then it can replace the previous with a probability rate which depends on the
increase of the objective function and on a scale factor, called temperature, in agreement
with the metallurgical annealing that inspires the method. S.A. avoids in this way local
minima but it needs a restriction of the parametric space Θ. In our context of interest,
the set Θ contains the parameters ξ. Until now, it is continuous and unbounded, since
Θ = {(η, βT , σ2) : η > 0, β1, . . . , βp−1 ∈ R, βp > 0, σ2 > 0}. To bound Θ, we
consider 0 < σ < 0.1 so that the simulated sample paths are less variable around the
sample mean and thus the multi-sigmoidal logistic profile is advisable. For the param-
eters β = (β1, . . . , βp)

T , we consider the confidence intervals, found by using the data
of the polynomial regression performed previously for the initial solutions. Specifically,
for β we consider the confidence intervals of the coefficients of the polynomial regres-

sion of − log
[(

mN
mj
− 1
)
η̂
]

against tj , for j = 1, . . . , N , where η̂ =
(
mN
m1
− 1
)−1

.
Finally, for η, we consider the interval (a, b) where

a = min
1≤i≤d

(
xi,ni
xi,1

− 1

)−1

, b = max
1≤i≤d

(
xi,ni
xi,1

− 1

)−1

.

Regarding the distributions of the MLEs, it is worth to notice that the exact distribution
of µ̂1 is GaussianN (µ1, σ

2
1/d) and the one of dσ̂2

1/σ
2
1 is chi-square χ2

d−1. Furthermore,
the asymptotic distribution of ξ̂ is a (p+ 2)-dimensional normal distribution with mean
ξ and covariance matrix I(ξ)−1, where I(ξ) ∈ R(p+2)×(p+2) is the Fisher information
matrix and can be expressed as

I(ξ) =
1

σ2

(
Ξξ −1

2

(
∂
∂θγξ

)
−1

2

(
∂
∂θγξ

)T n
2σ2 − Z3

4

)
,

where Ξξ ∈ R(p+1)×(p+1) and
∂

∂θ
γξ ∈ R(p+1)×1 are defined as

Ξξ =
d∑
i=1

ni−1∑
j=1

(
∆j+1,j
i

)−1
(
∂

∂θ
mi,j+1,j
ξ

)(
∂

∂θ
mi,j+1,j
ξ

)T
and

∂

∂θ
γξ =

d∑
i=1

ni−1∑
j=1

∂

∂θ
mi,j+1,j
ξ .

6. SIMULATIONS

A simulation study is developed to verify the validity of the two aforementioned
procedures. As a case study, we use a pattern of 100 independent sample paths simu-
lated by using the expression of the process obtained as the solution of the stochastic
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differential equation (9). All the sample paths contain the same sumber of data (that is
501), being (i− 1) · 0.1 for i = 1, . . . , 501 the observation times. The parameters used
for the simulation are η = e−1, β1 = 0.1, β2 = −0.009, β3 = 0.0002, σ = 0.01. See
Figure 6 for the plot of the paths. For simplicity, we have chosen a degenerate initial
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Simulated sample paths. σ=0.01

Time

Figure 6: 100 simulated sample paths of the process X(t) for p = 3, t0 = 0, x0 = 5, Qβ(t) =
0.1t− 0.009t2 + 0.0002t3, η = e−1 and σ = 0.01.

distribution centered in x0 = 5, i.e. P(X0 = 5) = 1. After obtaining each trajectory,
we chose 51 values from the first one and using a step equal to 1. The MLEs obtained
by solving the system (11) are summarized in Table 1.

Table 1: The MLEs obtained by solving the system (11).

Real Initial Estimations Rel. Err.

η e−1 = 0.3678794 0.3695601 0.3695532 1.673743e-03
β1 0.1 −0.04606928 0.10021729 2.172891e-04
β2 −0.009 −0.003311808 −0.009030270 2.030270e-03
β3 0.0002 0.0001356439 0.0002006625 6.625399e-07
σ 0.01 9.912749e-03 9.982475e-03 3.502022e-07

As a further case study, we use the same pattern as before by applying S.A. Moreover,
since S.A. is a meta-heuristic algorithm, we apply the procedure 10 times and then we
consider the mean of the resulting values. Clearly, if the number of replications in-
creases then the goodness of the results improves but also the computational cost. The
MLEs obtained in this way are summarized in Table 2.

Table 2: The MLEs obtained via S.A.

Real Range Estimations Abs. Err.

η e−1 = 0.3678794 [0.287803710, 0.405281061] 0.3862679 0.04998513
β1 0.1 [0.094192479, 0.155306328] 0.1099219 0.09921900
β2 −0.009 [−0.012033562,−0.009118551] −0.009722108 0.08023422
β3 0.0002 [0.000206216, 0.000245301] 0.0002131091 0.06554550
σ 0.01 [0.000000000, 0.010000000] 0.0001283712 0.13301015
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7. CONCLUSIONS

In this paper, we considered the deterministic multi-sigmoidal logistic function and
we used the presented model to describe the double-sigmoidal growth of coffee berries.
In order to make the model more realistic, we analysed its stochastic counterpart. More
in detail, we studied two different birth-death processes, the former with linear rates and
the latter with quadratic rates. From the last one, we derive a diffusive approximation by
means of a suitable scaling. Then, we found the MLEs of the parameters of the diffusion
process by using two different strategies: by solving a non-linear system and by maxi-
mizing the log-likelihood function via S.A. We also studied the asymptotic distribution
of the resulting MLEs. Finally, to validate the described procedures, we performed a
simulation study. Future investigations will be devoted to determine the degree p of the
polynomial Qβ , since it is unknown a priori and to use different meta-heuristic strate-
gies to find nice MLEs in a shorter computational time. It will be interesting also to
consider a real application based on the diffusion process.

ΠΕΡΙΛΗΨΗ

Θεωρούμε μια πολύ-σιγμοειδή γενίκευση του μοντέλου λογιστικής αύξησης. Το

ντετερμινιστικό μοντέλο παρουσιάζεται μαζί με το αντίστοιχό του στοχαστικό μο-

ντέλο. Ειδικότερα, αναλύουμε δύο διαφορετικές διαδικασίες γέννησης-θανάτου με

γραμμικούς και τετραγωνικούς ρυθμούς μεταβάσεων, αντίστοιχα. Από το τελευταίο

δίνουμε μια πιο εύχρηστη προσέγγιση διάχυσης μέσω μιας κατάλληλης κλιμάκωσης.

Επιπλέον, μελετάμε δύο πιθανές στρατηγικές για να υπολογίσουμε τους εκτιμητές

μέγιστης πιθανοφάνειας των παραμέτρων του μοντέλου. Για την επαλήθευση των πε-

ριγραφόμενων διαδικασιών, παρουσιάζουμε μία μελέτη προσομοίωσης. Διερευνάται

επίσης το πρόβλημα του πρώτου χρόνου διέλευσης.
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