TRACCIA 1

Il candidato svolga uno ed uno solo dei seguenti temi e risolva almeno due esercizi fra quelli proposti (preferibilmente in aree diverse).

Temi

- 1) La classificazione topologica delle superfici compatte.
- 2) Risoluzione del paradosso di Russell per via assiomatica.
- 3) Serie centrali di un gruppo.
- 4) Serie di funzioni e serie di Fourier.

Esercizi

- 1) Sia X lo spazio topologico ottenuto da due tori $T = S^1 \times S^1$, identificando un cerchio $S^1 \times \{x_0\}$ in un toro con il corrispondente cerchio $S^1 \times \{x_0\}$ nell'altro toro. Si determini il gruppo fondamentale $\pi_1(X)$.
- 2) Sia $A \in SL(2, \mathbb{Z})$, una matrice quadrata di ordine 2 a coefficienti interi e con det(A) = 1. Sia tr(A) la sua traccia. Si dimostri che:
 - (i) se $tr(A)^2 < 4$, allora A è periodica (cioè esiste n > 0 tale che $A^n = I$);
 - (ii) se $\operatorname{tr}(A)^2=4$, allora esiste $B\in\operatorname{SL}(2,\mathbb{Z})$ tale che BAB^{-1} è triangolare superiore;
 - (iii) se $\operatorname{tr}(A)^2 > 4$, allora A ha due autovalori distinti in $\mathbb{R} \setminus \mathbb{Q}$ e i rispettivi autospazi hanno pendenza irrazionale.
- 3) Teorema di deduzione del calcolo proposizionale.
- 4) Provare che le strutture relazionali $(\mathbb{Q}, <)$ e $(\mathbb{R}, <)$ sono elementarmente equivalenti, ove \mathbb{Q} è l'insieme dei numeri razionali, \mathbb{R} e' l'insieme dei numeri reali e < è il loro usuale ordine stretto.
- 5) Siano a, b, c le radici del polinomio $x^3 x^2 x 1$. Provare che per ogni $n \in \mathbb{N}_0$ il numero $a^n + b^n + c^n$ è un intero.
- 6) Stabilire se il polinomio $f = x^5 9x 3 \in \mathbb{Q}[x]$ è risolubile per radicali.
- 7) Integrare la seguente equazione differenziale:

$$xy' - y + \log x = 0.$$

8) Verificare che la forma differenziale

$$(x+xy^2)\,dx + (y+yx^2)\,dy$$

è un differenziale esatto e calcolarne le funzioni primitive.